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Abstract 

This paper presents a novel online algorithm for 
estimating ground height in vegetated 
environments, and its application to traversability 
estimation. Traversability estimation based on the 
shape of the ground is difficult in many 
environments where the ground is partially to 
completely obscured by vegetation. Typical 
algorithms assume that the ground is directly 
observable with no noise, which leads to 
incorrectly estimating the ground height and 
hence traversability in the presence of vegetation. 
The algorithm learns the typical distribution of 
visually observed heights around the ground, and 
probabilistically infers the true ground height. It 
iteratively improves its internal estimate over 
multiple frames. The iterative nature allows the 
algorithm to run in limited processing time, and to 
become more accurate with increased processing 
time. The results demonstrate that this algorithm 
out-performs other strategies in estimating 
ground height, and can be used to reduce the 
vertical acceleration of the vehicle in real time.  

1 Introduction 

Robotic platforms operating in outdoor environments 
require the ability to robustly perceive potential dangers 
beyond just binary obstacle detection. This includes the 
ability to observe and adjust the robot’s motion for the 
underlying terrain through traversability estimation. The 
type, shape and continuity of the terrain contribute to its 
traversability, which influences the actions the robot must 
take to traverse the terrain safely; a robot should slow 
down for irregular or bumpy terrain. Each vehicle will 
have a particular tolerance for maximum and accumulated 
stresses due to peak accelerations. 

Most techniques assume that the ground is fully 
observable, and operate under the assumption that all 
observed points belong to the ground [Berczi et al., 2015; 
Goldberg et al., 2002; Ho et al., 2013]. This assumption is 
true in environments such as deserts and man-made 
environments. In unstructured environments, such as many 
field environments, features such as grass and other plants 
will partially or completely obscure the ground, and 
therefore simple approaches will have significantly 
degraded performance. Additionally, it is often assumed 

that the traversability of a patch of ground is independent 
of the direction of traversal, which is an invalid assumption 
for many of these common environments. These factors 
lead to an incorrect estimation of traversability, limiting 
the utility of the robotic platform. This work aims to 
expand the domain of environments where traversability 
can be estimated to include grassed environments and 
those with low-lying vegetation, such as agricultural fields.  

This paper presents a novel online algorithm for 
estimating the location of the ground even in environments 
where it is partially or completely obscured. The algorithm 
takes periodic observations of the typical distribution of 
visually observed heights around the ground, and 
probabilistically infers the location of the ground given 
noisy measurements. It makes no assumptions about the 
distribution of heights, and so is equally applicable to 
many environments, including those with no vegetation. It 
learns online and therefore is capable of adapting to 
changing environmental conditions. The results 
demonstrate that this algorithm significantly out-performs 
other strategies for ground height estimation in complex 

 
Figure 1: Typical headland in a broad-acre field. The wheat 
stubble present obscures the ground, corrupting any 
measurements of the true ground location. This results in the 
crop dominating traversability measures, as opposed to the 
true danger, which is the deep wheel tracks. The first row 
shows camera imagery, the second indicates the estimated 
ground height (blue is low, red is high) from the proposed 
algorithm, with the robot indicated by the arrow. The right 
figures indicate correspondences between the two. 

 



field environments. 
This algorithm is demonstrated operating online, 

regulating the speed of a mobile robot platform to reduce 
its peak accelerations. The ground height estimation 
algorithm is combined with a path-dependent traversability 
metric that computes the maximum applicable velocity 
with respect to the shape of the ground. The results 
demonstrate that the robot slows down for hazards in the 
environment, reducing peak accelerations on the vehicle.  

The remainder of this paper is laid out as follows. 
Section 2 provides relevant background to the work 
presented in this paper. Section 3 outlines the approach. 
Sections 4 and 5 introduce the experiments and detail 
results respectively, while Section 6 provides conclusions. 

2 Background 

There are two different approaches to traversability 
estimation: 1) those that estimate traversability directly 
from sensor measurements, typically using some form of 
machine learning, and 2) those that model important 
characteristics of the environment and predict the attitude 
of the vehicle as it traverses these regions. 

Approaches that learn traversability directly from 
sensor measurements require either provided learning 
inputs from a human supervisor, or interactions with the 
environment for example using a bump sensor [Kim et al., 
2007; Kim et al., 2006] or by wheel slip estimation 
[Angelova et al., 2007]. Pre-trained strategies are limited 
in their generalization to different environments. Learning 
via interaction means that the robot must interact with 
potentially dangerous environmental features before it 
learns to avoid them, and as such its safety cannot be 
guaranteed. 

Strategies which are based on environmental and robot 
characteristics are capable of generalizing well to different 
environments, provided the important characteristics can 
be well determined. Goldberg [Goldberg et al., 2002] 
introduced the GESTALT traversability metric, which uses 
plane fit statistics to determine traversability, together with 
known information about the robot such as its minimum 
clearance. Other works determine traversability by 
estimating the attitude of the robot on a given surface [Ho 
et al., 2013; Lacroix et al., 2002; Tarokh and McDermott, 
2005], and inferring statistics such as the stability margin. 
These strategies assume the load bearing surface can be 
directly observed by taking the median of observations in a 
vertical cell, and as such fail in environments where the 
ground is obscured. 

Typical traversability algorithms operate in close field 
of view where good structural information is available.  
Traversability estimation can be extended to a longer range 
using near-to-far learning [Hadsell et al., 2009; Sofman et 
al., 2006; Vernaza et al., 2008].  

Wellington [Wellington et al., 2005] proposed a 
method to infer the location of the ground in environments 
where the ground is partially or completely obscured. This 
method classified observations into ground or vegetation 
classes, and then attempted to ascertain a common 
vegetation height to predict the likely location of the 
ground. This method assumes that all vegetation on the 
ground is of a similar height, which is an invalid 
assumption in many environments, and additionally 
requires highly dense range measurements and 
multispectral imagery to accurately classify and infer from 
observations. 

3 Design 

The basis of the algorithm is the fact that observations of 
heights are drawn from some underlying distribution, 
which can be approximated. The method is iterative, and so 
with more observations the results become increasingly 
accurate. 

The algorithm has three main stages as shown in 
Figure 2. Firstly, the distribution of heights is estimated 
relative to the location of the ground, denoted model 
construction. The model construction module maintains a 
combined point cloud in the current reference frame, from 
which it constructs the model. Secondly, this model is used 
to iteratively infer the location of the ground in noisy and 
incomplete data. The ground height inference module 
iteratively resamples the ground height estimate using the 
constructed model as a reference point, and combines 
multiple samples over time to produce an estimate of the 
true ground height. 

Finally, this model of the ground is used to estimate 
the traversability of the terrain given planned path. This is 
achieved indirectly by determining the maximum 
applicable velocity of the robot given a required maximum 
vertical acceleration. 

 

 
Figure 2: Ground height estimation pipeline, indicating the two 
major components - model construction and ground height 
inference.  

 
Figure 3: Typical model histogram for stubble fields showing the 
distribution of height observations around the true ground. The 
histogram includes noisy stereo matching results and stubble. 

 

 



3.1 Model construction 

The model is a histogram which describes the probability 
of observing a particular height relative to the 
mechanically observed ground height. The histogram is 
built online which enables the system to adapt to 
environments with different types of vegetation. 

The histogram is constructed by tracking points until 
they pass underneath one of the robot’s wheels, where an 
estimate of the ground height can be inferred from 
mechanical constraints. This gives the absolute location of 
the points relative to the ground, which can then be added 
to the model. Samples are discarded when they move 
behind the robot. Old samples are slowly forgotten to allow 
for the model to handle transitions between environments. 

Figure 3 shows a sample histogram for the 
environment investigated in this work. In this example, the 
nonzero regions below -0.1m are due to errors in the stereo 
matching algorithm. The peak is slightly misaligned with 
the true zero. This is because the true location of the 
bottom of the wheel, the location used for absolute 
grounding of the measurements, is a compliant surface. 
This misalignment has no effect on the results in the 
camera’s reference frame, since it is effectively accounting 
for the errors in other transformations. The slow drop off in 
probability above the ground is a result of the stubble (crop 
residue) present in the environment. 

A consequence of this model construction strategy is 
that the system can only learn about terrain that the robot 
drives over. In some circumstances the robot could avoid 
all vegetation, making the model heavily biased. 

3.2 Ground height inference 

The ground height is inferred by assuming that all height 
samples were drawn from the model. Provided the robot 
has traversed a sufficiently representative region of the 
world, this is a valid assumption. 

To infer the ground height, the world is first discretised 
into a grid of 100×100 cells, each of which is 0.1m × 0.1m. 
The size of the region was limited for two reasons; firstly 
computation savings, and secondly outside this region the 
accuracy of stereo matching was significantly decreased. 
During each update step, a histogram of heights is 
determined for each cell from the current point cloud. The 
algorithm iteratively resamples the ground height of each 
cell using the conditional probability 
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where    is the height of cell  ,    
 is the average 

height of the 8-connected neighbors of cell  , and    is the 
histogram associated with that cell. Resampling each 
height in turn from the conditional probability tends 
towards the true distribution according to Gibbs sampling 
[Geman and Geman, 1984]. The benefit of this strategy is 
that resampling can be time limited per update, and 
continue to improve with further updates. 

Periodic samples are averaged to provide an estimate 
of the true ground height for each of the cells. 

This conditional probability consists of three 
components; the smoothing component, the data 
component and the prior. The prior is defined as 

                (2) 

where    is a system parameter to bias the solution 

towards lower ground heights, which is necessary for 
situations where the ground may be completely obscured. 
The data component is defined as 

                           (3) 

where       indicates the model histogram shifted 
by the given height, and         is the Kullback-Leibler 
divergence between the two histograms. This 
probabilistically makes solutions tend towards aligning the 
observations with the model. The smoothing component is 
defined as 
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where    is the standard deviation of the ground 

height, and is also a system parameter. 

The condition probability         
     is sampled 

using the Metropolis-Hastings algorithm [Hastings, 1970; 
Metropolis et al., 1953], using a Gaussian proposal 
distribution. Resampling using the Metropolis-Hastings 
algorithm requires an initial guess to be close to the true 
answer, otherwise the resampling can take an arbitrary 
amount of time to converge to the true distribution. To this 
end new samples are approximately initialized using a 
brute force strategy. 

3.3 Traversability estimation 

The traversability of ground regions is dependent on the 
path taken by the robot through the environment; hence the 
traversability of the ground can only be computed once the 
path is known. 

The path of each of the wheels through the ground 
height map is calculated using their known offset from the 
robot. The ground height at each of the points along this 
path is calculated. 

To calculate the maximum velocity, it can be shown 
that external accelerations (due to sources other than the 
vehicle’s propulsion) are given by 
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where     describe the shape of the ground,   is the 
velocity of the robot tangential to the ground, and   is the 
acceleration magnitude. It is assumed that the velocity 
perpendicular to the ground is zero. 

Based on this, a maximum velocity can be computed, 
given as 
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At each point along the paths, the maximum velocity 
for each wheel is determined, and then these are combined 
by taking the smallest maximum velocity at each point. 
Acceleration curves are applied to this result to ensure that 
the minimum velocity requirements can be realistically 
achieved, and then the new maximum velocity at the 
current location is applied. 

4 Experiments 

The platform used for testing is a retrofitted John Deere TE 
Gator. The vehicle is approximately 2.6m long and 1.5m 
wide. The cameras used are a stereo pair of Point Grey 
Grasshopper GS3-U3-23S6-C cameras with a 0.75m 
baseline, triggered externally at 10Hz. These cameras were 
mounted at a height of 1.55m, angled downwards 15 
degrees. Figure 4 shows the platform. 

Stereo calibration was performed using the AMCC 



MATLAB toolbox [Warren et al., 2013]. Stereo matching 
was performed using LIBELAS [Geiger et al., 2011]. 
Visual odometry was performed using LIBVISO2 [Kitt et 
al., 2010]. The platform used Robot Operating System 
(ROS) for path planning and interprocess communication 
as described in [Ball et al., 2015]. To modulate speed the 
process intercepted the desired velocity output from the 
path planner and sent new velocities to the vehicle 
controller. 

Datasets were gathered on a farm in Emerald, 
Australia. Experiments were carried out in a field with 
wheat stubble. 

4.1 Ground height accuracy 

The purpose of this experiment was to evaluate the 
accuracy of the proposed algorithm against other 
commonly used methods for ground height, including 
median, mean and minimum values from the point cloud. 

To this end a dataset was gathered of stereo camera 
imagery in a 10m × 10m region of a field containing 
predominantly wheat stubble by driving several times 
through the same region. A series of posts were placed in 
the field with 5m spacing between to act as robust markers 
to assist with registering the datasets. The chosen section 
of field contained deep wheel tracks from farm equipment, 
as well as some lighter cross wheel tracks. 

All of the stubble was then carefully removed from the 
region so that the ground wasn’t obscured at any point. 
There was little change to the underlying ground height 
during this process. A second dataset was gathered of this 
region using the stereo camera pair. This enabled the 
generation of a high-precision ground truth of the surveyed 
region, subject to the accuracy of stereo matching and 
visual odometry. Since the datasets were very short, these 
were assumed to be locally accurate. 

To combine the data into a complete ground truth, the 
data was split into individual passes of the region which are 
locally accurate. These were then aligned using a 
combination of inspection and ICP methods to ensure a 
high degree of alignment. The ground truth height for each 
cell was then chosen as the median of the observations as 
this measurement is the most statistically robust 
measurement. 

For visualization purposes, a second order surface was 
fitted to the points to remove the slow gradient changes and 
highlight the local variation. The cells were colored by 
their deviation from this surface. 

4.2 Traversability controller 

The purpose of this experiment was to demonstrate the 

utility of the traversability metric based on the ground 
height estimator in minimising the acceleration of the 
vehicle. To this end, a fixed path was mapped out in the 
field which consisted of sections following the crop rows, 
travelling at an angle to the crop rows, and travelling 
directly transverse the crop rows. There was a narrow 
washout through the area. 

Two traverses of this path were performed, one 
without speed modulation and one with the speed 
modulation to show the corresponding decrease in the 
acceleration of the vehicle. Figure 6 shows the path of the 
robot in each of the traverses, as logged by a high precision 
GPS-INS system. The raw INS measurements were used to 
estimate the acceleration of the robot. 

5 Results 

5.1 Ground height accuracy 

Figure 5 shows the predicted ground height for each of the 
methods. It can be seen that the minimum consistently 
underestimates the ground height, excepting where crop is 
present. This is a result of the frame to frame errors which 
typically are found in a method like stereo matching. 
Despite this, Wellington [Wellington and Stentz, 2003] 
demonstrated that even with high accuracy measurements 
from a laser, the minimum height consistently 
underestimates the true ground height, making this method 
unsuitable. 

The mean and median give much more robust results, 
and are comparable, however with a slight reduction in 
error from the median. It can be seen that the mean is 
corrupted by erroneous stereo matching results, shown as 
the deep stripes at a 45 degree angle. The median, on the 
other hand, is significantly more robust to these outliers. 

The median overestimates the height consistently in 
the middle of the image, corresponding to the significant 
stubble present in this region. 

The proposed method has removed much of the 
stubble from the output, while maintaining the shape of the 
ground. Table 1 summarizes the mean error, RMS error 
and 95

th
 percentile error of the prediction errors for each of 

the methods. The proposed method can be seen to have  

 
Figure 4: The robotic platform used for testing. 

 

Method ME RMSE 95
th

 
Percentile 

Mean 15.777 92.379 171.742 
Median 9.387 74.783 94.563 

Minimum -78.182 307.761 264.296 

Proposed 
Method 

-1.504 30.251 59.305 

Table 1: Errors in ground height. All numbers in mm.  

Step Average 
Duration (ms) 

Model construction 37.4 
Histogram construction 16.2 

New sample initialization 9.8 
Resampling 86.7 

Overheads 76.8 

Total 226.9 

Table 2: Average processing time for different steps in the 
ground height estimation. Overheads include interprocess 
communication from ROS, datatype conversions and 
coordinate transformations on point clouds. 

 



  

 
Figure 5: Predicted ground height using the proposed method, and a number of other naïve approaches. The colour indicates the height of 
the cell; blue is low and red is high. The large top figure shows the ground truth. The second row is the predicted ground height from each 
of the methods, and the third row is the error against the ground truth. The results are, left to right, mean, median, minimum, and the 
proposed method. The small circular regions in the ground truth figure correspond to the posts used for registration. 

 
Figure 6: Vertical acceleration of the robot with and without the proposed speed control system. The red circled region indicates a deep 
ditch that the proposed method detected and slowed down the robot. . The green circled region indicates a region where the proposed 
method reduced the vertical acceleration of the robot for a hazard, although not less than the specified limit. 

 



significantly lower error than the other methods in all 
respects, decreasing RMS error by 60%, the 95

th
 percentile 

by 40%, and reducing the bias by 84%. 
The limiting factor of the proposed method in this 

instance is that it oversmooths the higher frequency 
components of the ground. This could be mitigated by 
increasing the cell resolution or by increasing   . This will 

be at the expense of increased processing time in the case 
of increasing the cell resolution, or increased estimation 
bias in the case of increasing   . 

Table 2 outlines the typical processing time for the 
algorithm on an Intel i7-2640M using only a single core. 
The total processing time per iteration allowed for an 
update frequency of 4.4Hz, which is approximately the 
same as stereo matching on the same machine. 

5.2 Traversability controller 

Figure 6 indicates the paths for each of the traverses and 
the vertical acceleration of the vehicle. The acceleration 
has been max-filtered for visibility in the figures. Overall 
the traversability controller successfully reduced the 
acceleration of the vehicle. The maximum acceleration was 
reduced by approximately 16% when applying the 
controller. 

The significant hazard in this environment was a deep 
ditch (indicated on the diagram). The acceleration of the 
vehicle was reduced by 20% during the traversal of this 
region by slowing the robot. 

There was a region when travelling across the crop 
rows where the acceleration of the vehicle wasn’t limited 
as effectively by the algorithm. In this region the crop rows 
are much closer together, and as such are oversmoothed by 
the ground height estimator. As a result, this region appears 
to be much smoother. Additionally, the traversability 
metric only considers the acceleration of the wheel itself, 
assuming that it remains in constant contact with the 
ground. The acceleration of the vehicle is decoupled from 
the wheels by shock absorbers. This leads to inaccuracies 
between the predicted and measured accelerations, which 
is especially prevalent here as the vehicle is oscillating at 
close to resonance. 

6 Conclusion 

This paper has presented a novel algorithm for estimating 
the load-bearing surface in the presence of occlusions due 
to vegetation. It has been shown to significantly 
out-perform other strategies at estimating the true ground 
height in a challenging environment. 

This method is applicable to many other strategies for 
traversability estimation, beyond just the one presented 
here. Many strategies for traversability estimation [Berczi 
et al., 2015; Goldberg et al., 2002; Ho et al., 2013; Lacroix 
et al., 2002; Tarokh and McDermott, 2005] rely on 
complete and accurate information of the location of the 
ground, and as such can be complemented by this strategy. 

The presented method for traversability estimation has 
been shown to reduce the acceleration of the vehicle, 
however further work will be required to effectively limit 
the acceleration.  

The algorithm requires a few environment-specific 
parameters in order to effectively estimate the ground 
height. Future work will investigate learning these 
parameters online from observations. Additionally, the 
model construction currently requires the robot to traverse 
a representative region of the environment in order to 

construct an accurate model. Future work will aim to 
mitigate this requirement. 
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