
Proceedings of Australasian Conference on Robotics and Automation, 2-4 Dec 2014, The University of Melbourne, Melbourne, Australia

Design of an API for Integrating Robotic Software Frameworks

Min Ho Lee1, Ho Seok Ahn2, Bruce A. MacDonald3
Department of Electrical and Computer Engineering, CARES, University of Auckland

Auckland, New Zealand
1mlee242@aucklanduni.ac.nz, 2, 3{hs.ahn, b.macdonald}@auckland.ac.nz

Abstract

While there are a number of good software
frameworks for robotics applications, these
changes over time and it is not so easy to create
applications that use multiple frameworks. In this
paper, we present the design of an Application
Programming Interface (API) for our UoA
Robotic Software Framework, a heterogeneous
robot development framework that allows
interoperation between existing component-
based frameworks such as ROS, ROCOS, and
OpenRTM, and also reduces the impact of
changing frameworks on development of robotic
applications. In the development of this API,
four key design concepts are: interoperability,
compatibility, support for heterogeneous
applications, and dynamic monitoring and
control. The API can be used for developing
different applications with different frameworks,
using the same robot hardware platforms and
components, with minimal development of
additional procedures. To evaluate the
effectiveness of our framework, we developed
two case studies, which are both healthcare
applications with different programming
languages and frameworks, and then applied
them to two robot platforms with the same
specifications.

1 Introduction

 Development of robot systems has always been a
complex challenge because integration and development
of complex components requires significant time and
effort [Ahn et al., 2008]. However with requirements for
robotic systems growing more complex, researchers have
developed component-based software frameworks
[Herman et al., 2013] such as ROS [Quigley et al., 2009],
Open-RTM [Ando et al., 2008], OPROS [Jang et al.,
2010], and ROCOS [Jayawardena et al., 2012]. These
component-based frameworks provide libraries and
distributed communications abilities, enhance the
opportunities for developers to reuse code and
components, and provide help for development,
integration and deployment of robotic software systems.
 Many component-based frameworks are open source
frameworks, so researchers develop intelligent

components, such as image recognition, speech
recognition, and navigation, and share them with other
researchers. But there are several limitations. Some
operate on specific operating systems, for example, ROS
runs mainly in a Linux environment, and ROCOS mainly
in a Windows environment, while others, such as
Open-RTM, OPROS, and Orocos are supported by both
Windows and Linux. ROS has a Windows version
WinROS, but its packages are different from the ones in
ROS. Overall the frameworks are dependent on a specific
development environment, and researchers and
developers must re-write intelligent components and
applications in different ways to transfer them from one
framework to another. This can be difficult and
time-consuming. In addition when a new version of a
framework is created, or a framework becomes obsolete
and another new one becomes popular, applications must
be updated.
 Recently, there have been some efforts to allow
interoperation between two different frameworks, such as
ROS-OpenRTM [Biggs et al., 2010] and ROS-OPROS
[Jang et al., 2012] Most of implementations were done by
translating the messages and protocol through some kind
of bridging software to channel between the two
frameworks. Although they allow researchers to use
components of two different frameworks at the same time,
they only provide one-to-one interaction of the specified
frameworks, and hence as frameworks are developed
there will be a need for more bridges to be created.
Therefore we should develop these kinds of frameworks
repeatedly when we need to combine different
combinations for our robots.
 Researchers and developers are faced with a few key
different frameworks to choose from and the prospect of
future changes as one framework becomes obsolete and
others become popular. Rather than creating a new
framework for our needs, we designed the UoA robotic
software framework, which gives developers access to
multiple existing software frameworks, including
components, packages, libraries and distributed services
from multiple combinations of existing frameworks. We
can relatively easily add new frameworks including those
developed in the future, as well as delete old frameworks.
Our framework also supports the use of different versions
of the same framework; it isolates the components in one
version from those in another. For using various
components, we designed a robot manager, which
manages the connections between applications and

Proceedings of Australasian Conference on Robotics and Automation, 2-4 Dec 2014, The University of Melbourne, Melbourne, Australia

components of frameworks. We designed the API of the
robot manager for using various components of
frameworks, so researchers can develop various
applications without modifying those components. In this
paper, we focus on the API design of the robot manager.
 This paper is organised as follows. We describe concepts
of our robotic software framework in Section 2, and
introduce the design of our robotic software framework in
Section 3. We present an experimental robot platform
HealthBot and two case studies in Section 4. Finally, we
conclude this paper in Section 5.

2 Concept of UoA Robotic SW Framework

2.1 Limitations
 Like many other researchers, in our research laboratory
we have many robots, with several robotics frameworks,
which are used in various robot applications. Like others
we seek to reuse software for efficiency, and to integrate
applications with different robots working together. They
are operated very well, but there are several limitations.
Firstly, code used for any framework is often restricted
only to the specific framework the code was implemented
in. To migrate a component from one framework to
another framework, the component must be rewritten to
the API of the new framework. This is especially a
problem as there are risks of frameworks being
discontinued, rendering the old code useless until a
solution for compatibility is implemented.
 Some frameworks such as ROS have software
restrictions on applications such as the limited language
support and platform restrictions, and all have a defined
API. Hence, in order to migrate a component from one
framework to another, the component needs to be
modified to be compatible with these requirements such
as the operating system, in some cases creating large
efforts for the developers.
 Some components are only designed for use within a
single framework, such as sensor drivers. In order to use
an implementation of a component using a different
framework, new software has to be developed to create
functionality for the target framework. In some cases
efforts are made to make drivers and other key
components portable across frameworks, such as Gearbox
[Makarenko et al., 2007], which argues for a thin
framework with refactored code components at the lower
levels. In this paper, we take a different approach,
providing integration at a higher level.
 Usually for each different kind of robot, there is one
robotic framework used to develop software. To
complicate the development process, there is a large
learning curve associated with each robot framework.
Hence, in order to migrate an application to another robot
system, the developer may be required to learn both of the
frameworks. Overall, a considerable reimplementation
effort may be required to port an old application suite to a
new framework, during which time the operational ability
may be significantly reduced.

2.2 Key Concepts
 The main focus of our design is to create a robotic
software framework that allows interoperation among
various existing component-based frameworks, and is
extensible to future frameworks with a minimum of effort.
Thus we can accommodate new frameworks in our

development roadmap with a minimum of effort at any
one time. An important part of our design is to design our
API to control robots’ hardware and use components,
packages, and libraries available in any framework. In
addition, it is also important to define methods in the
robot manager’s API to dynamically identify, classify and
monitor the connected robot frameworks that are available
for requests from applications. For this, our design
includes the following functions.

1) Interoperability: for any robot the developer of
an application should be allowed to choose the
components and packages from any of the
frameworks available. If there is a service that
requires use of multiple components across
different frameworks, the robot manager should
be able to determine whether or not these
components are compatible with each other.

2) Compatibility: use of the UoA framework should
not be restricted to a specific platform or
environment but rather should function with
frameworks in various platforms or
environments.

3) Support for heterogeneous applications: the UoA
framework should be accessible by applications
from heterogeneous environments. The
communication protocol should be easily
implemented in heterogeneous applications,
which can be executed in various environments
and use different frameworks.

4) Dynamic monitoring and control: the API should
provide a method for controlling and managing
the status of each data flow connection.

3 Design of UoA Robotic SW Framework

 We designed the UoA robotic software framework based
on the four key concepts. It allows researchers to develop
different applications with different frameworks by using
the API of the robot manager, which manages the
connections to several frameworks.

3.1 Overall Architecture
 The UoA robotic software framework consists of three
layers as shown in Fig. 1: an application layer, a robot
manager layer, and a component layer. We consulted
Bruyninckx’s principle of separation of concern in
robotics design [Herman et al., 2013], which separates the
functionalities in levels of coordination, configuration,
computation and communication coupled into
composition of the features. The application layer
comprises the user applications and communication
interface to define the application logic of the developers
by sending and receiving data from the components. The
application is able to interact with the robot manager layer
using the predefined API, using a combination of
WebSocket connections and JSON messages through the
communication interface. The communication interface
has the role of channeling between the user application
and the robot software framework, and any type of
platform can be used as the application layer. Therefore,
the client application has an interface defining the input
and output methods as well as communication functions
for sending the requests from interactions with users to

Proceedings of Australasian Conference on Robotics and Automation, 2-4 Dec 2014, The University of Melbourne, Melbourne, Australia

the robot manager and obtaining the results. The main
communication between the client and the robot manager
must work consistently across multiple platforms, so we
use web sockets [Lubbers et al., 2010], which provide full
duplex communication over a single TCP connection and
allow the client to be independent of any platform,
making it scalable. Then the application makes a request
call for services using the API via the robot manager
layer.
 The robot manager layer is responsible for monitoring,
mapping and channeling the communication among the
components of different frameworks. The robot manager
consists of two modules: a robot manager core that
provides status monitoring, and a configuration file that
includes priority and dependency of the API. The
component layer includes various robotic frameworks,
such as ROS and OpenRTM, and their components that
are connected to the robot manager. The components are
able to provide interaction with the robot manager layer
through bridges, which provide translations of the internal
communication of the framework to a generic format and
vice versa, for intercommunication between the
frameworks.

3.2 Robot Manager
 There are three main roles of the robot manager:

1) managing the status of each connected
framework;

2) mapping the higher level API to the framework
functions;

3) transferring the data from framework to
framework.

To perform these roles, the robot manager uses two
modules: a robot manager core and a configuration file.
The configuration file is responsible for mapping the API.
It contains a table of the available robotic components for
each robotic framework, which specifies priorities,

required input arguments and outputs to each component
which are mapped to the high level API to the clients.
Hence, when the robot manager layer receives a request
from the application layer to use a certain function, it will
check the configuration table to see if that call is valid and
translate the higher level API calls to the component
specific API.
 Fig. 2 shows the procedure for API calls based on the
configuration file. When the robot manager recevics a call
from the application to call a faceRecognition function,
the robot manager searches for the details of the face
recognition function from the configuration file. Then it
selects the component that has the highest priority, and
checks dependencies. If the selected component has the
required dependency, it generates the list of dependencies
required to start the faceRecognition function. This is then
passed to the robot manager core to be validated regarding
whether the operation will work.
 The robot manager core, which is responsible for
managing the status of each connection, sets up the
communication link and forwards the request from the
application to the appropriate frameworks. It also registers
the connections with the list of the current running maps.
The list is used to manage the various types of
connections by keeping the track of the run-time status of
each bridge and the data flow with the frameworks that
have been registered. The messaging format in the robot
manager layer consists of JSON format as a generic form
of communication between the frameworks. In order for
the components to operate, the robot manager must share
common data types, which are message types
communicating among components [Arndt et al., 2013].
By JSON format, the robot manager can transfer the
message among frameworks and allow the message to be
transformed into the message class of the native
framework in a light-weight communication. As
previously mentioned, we validate the interoperability
after generating the list by comparing the message
structure that is transformed in JSON format. The bridge
is responsible for translating the messages of the
individual format into generic JSON format.

3.3 API Design
 In order to design the API of our robot manager, we
analysed API structures and protocols of existing

Fig. 2. API calling procedure based on the
configuration file in the robot manager.

Fig. 1. Architecture of the UoA robotic software
framework, which consists of three layers: application,
robot manager, and component.

Proceedings of Australasian Conference on Robotics and Automation, 2-4 Dec 2014, The University of Melbourne, Melbourne, Australia

component-based frameworks. In particular, we chose
three different types of existing robotic framework for
analysis: ROS, ROCOS, and OpenRTM, which are the
most used robotics frameworks. We analysed the required
elements to establish a data port and the types of
messages required for input and output. We have chosen
these three types of middleware since each has its own
representative model of communication; ROS using a
channel model, OpenRTM using CORBA and ROCOS
using plain messaging.

3.3.1 ROS
 ROS is an open-source framework developed by Willow
Garage. Each ROS component known as a “node” can
communicate with other nodes by establishing a
communication channel. Each of ROS’s communications
channels comprises two parts: “topic” and message types.
The topic is a string that defines the name of the
communication channel which is managed in the ROS
master node, a nameserver containing a list of currently
established nodes and topics within the ROS environment.
Furthermore each topic is strongly typed by message
types that only allows either publishing or subscribing to
messages of that type. Furthermore in ROS there are 2
types of communication, which use 1) a publisher and
subscriber model for continuous data flow and 2) ROS
services, ROS’s implementation of remote procedure call
request and reply interactions.

3.3.2 ROCOS
 ROCOS is a proprietary middleware developed by Yujin
Robot, Korea, that provides application contents for the
company’s robots, such as iRobi and Charlie. ROCOS
uses an API encoded in XML. While it is proprietary
software with a hidden implementation, it is able to
support both data flow and service typed messages. The
input and output structures of ROCOS vary from API to
API. For the robot manager context, we have
implemented a class for each different message according
to the name of the each API.

3.3.3 OpenRTM
 OpenRTM is a middleware implementation of
RT-middleware developed by AIST, Japan. OpenRTM’s
component is known as an RT-Component or RTC, which
uses a finite state machine model to control its operations
to send or receive data flows. Each state has its own
characteristic ports to its interface, sending or receiving
different kinds of messages depending on the state. The

states are also controlled dynamically over runtime
depending on the execution defined by the user. The
previous version of OpenRTM used an omniORB
implementation of CORBA to communicate and it
therefore is available in a variety of languages for
multiple platforms [Ortiz et al., 2014]. The new version of
OpenRTM uses ICE instead of CORBA [Morckos et al.,
2014].

3.3.4 UoA Robotic Software Framework
 The API design is a critical task in order to fulfill the
four key cocepts as it requires a generic form of
communication and the ability to connect to the other
frameworks. Generally, communication of existing
frameworks consists of message-based communication in
two forms: a data port model that requires continuous
connection maintenance for input or output data flow, and
a service model that is a remote procedure call to provide
results, which does not require the connection to be
sustained once the results have returned. However in
addition to data flow information, more information is
needed in order to further handle the data flow, such as
forwarding the dependant stream as input of another
component. By wrapping the transmitted data with
lightweight headers, we have created control messages
that are structured in a way to identify components and
the framework. Table 1 shows the messaging structure of
the robot manager. The client is able to control the
connection by specifying the op field using either a
Request or Kill command to establish or terminate the
dataflow connection respectively. In order to request for a
connection to a component, the control message must
specify the functionality which is defined in the type field
of the message. The jsonMessage field is the message that
contains the data from or to the component in lightweight
JSON format.

3.4 Control Procedures
 In order to request a component connection, the
application is required to make the Request command for
some kind of functionality using the high level API. The
high level API will be defined in the configuration file
which will be mapped to a framework specific
components. When a service is requested through request
messages, the robot manager will refer to the table in the
configuration file and check the required dependencies.
The dependencies can be satisfied if the message structure
of the output is same as the message structure of the input
component. Hence, the robot manager makes an
XML-RPC [Allman, 2003] request to get the message
structure of the component to the bridge layer, which
contains a database of the message structures.
 For example in Fig. 2, in order for face recognition to
work, it requires a face detection component that
respectively also requires a camera component. Fig. 3
shows the overall procedure of the Request command.
When the robot manager receives a request message for
the face recognition function from the application, it will
generate a dependency list with dependent components;
face detection and camera. If the input of the dependent
component matches with the output of the depended
component, the robot manager checks dependency is
satisfied. Hence the message structure will be checked
between a) the output of the camera function and the input
of the face detection function, then b) the output of the
face detection function and the face recognition function,

Table 1. UoA robotics Software Software Framwork

Messaging Structure.

Op The operation instruction.

type (client to
RM)

Function type to be requested or used.

type(RM to
Bridge)

A list of strings which are required to communicate
with components. In ROS these are names of topic
and message types, and in OpenRTM this is the
name of the message types and execution period.

jsonMeesage
The context data formatted in JSON. This applies
to both input and output.

Proceedings of Australasian Conference on Robotics and Automation, 2-4 Dec 2014, The University of Melbourne, Melbourne, Australia

which together verifies the components are able to talk
with each other. If all of the dependencies are satisfied,
the robot manager forwards the request call to the bridge,
and registers the connection to a status map.
 On receving the request messages, the bridge will open a
new commnuication channel that can be used to
communicate with that specific component. The bridge
also registers connections to a map such that, on receiving
any messages from the component, it knows which
communication channel it must send back to. On
invocation of the Kill command, the robot manager will
first forward the connection to the bridge and delete the
registered information and close down the communication
channel. Then on receiving the command, the bridge will
also shut down the communication of the component.

4 Experiment: Case Study

 We developed two HealthBots with healthcare
applications based on the robot manager framework. The
applications of two HealthBots are developed with
different programming languages and frameworks, with
the same functionalities, using the APIs of the UoA
robotic software framework. To evaluate our framework,
we developed a general case study with the two
HealthBots.

4.1 System Overview
 Fig. 4 shows the HealthBot, which is based on a kiosk
type robot platform from Yujin Robot in South Korea and
is originally designed as a serving robot in cafes and
restaurants, and for assisting teachers in schools; it has a
friendly appearance and tray for carrying items. The
HealthBot is a differential drive mobile robot 1.2 meters
high, powered by a 24V Li-Polymer battery, and consists
of a camera, a rotatable touch screen, speakers,
microphones, ultrasonic sensors, bumper sensors, a laser
range finder and two single board computers. User
responses were received via the touch screen and
HealthBot responds to participants with synthesized
speech, visual output on the screen, and movements. The
touch screen helps the older people who have hearing or
speaking difficulties by showing messages or pictures.
HealthBot’s synthetic speech is generated through a
diphone concatenation type synthesis implemented with
the Festival speech synthesis system [Black et al., 2012]
and used a New Zealand accented diphone voice
developed at the University of Auckland [Watson et al.,
2009]. Expression was added to the synthetic speech
through an intonation modeling technique [Igic et al.,
2009] called ‘Say Emotional’.

Generate
Dependency

Send
Dependency

Validate
Dependency

Setup
Connection

Ready to Call
Function

Establish
Connection

Register
Connection

Operation

Application Robot Manager Framework A Framework B

Register
Connection

Execute
Components

Dependency
Check

Establishing
Connection

Service
Call

Message Routine ProcessData

Send
Message
Structures

Send
Message
Structures

Setup
Connection

Execute
Components

Fig. 3. Overall procedure of Request command.

Proceedings of Australasian Conference on Robotics and Automation, 2-4 Dec 2014, The University of Melbourne, Melbourne, Australia

4.2 Healthcare Application
 The application of the HealthBot is originally developed
by our HealthBot project [Robinson et al., 2012;
Robinson et al., 2013; Datta et al., 2013; Stafford et al.,
2014]. It was deployed in a general practice of hospital to
capture vital signs information, in order to save nurses’
time. HealthBot measures patients’ vital signs, such as
blood pressure, pulse rate, and the blood oxygen
saturation level, and transfers the data over webservices to
RoboGen, which is our medical server. We developed this
application using Flex/ActionScript 3.0, which is
becoming an outdated technology especially with growing
mobile markets and its limited support in Linux
environments.
 Therefore, we developed another application, which has
the same functionalities as our Flex/ActionScript-based
application, using pure HTML and Javascript. Actually
developing new applications with different programming
languages and tools requires time-consumming effort on
developing similar systems. However, we did not need to
develop all of them again, because we used our new
robotic software framework for the new application.
Fig. 5 shows the system diagram of our two different
applications. We developed only the top level user
interface as a new component, and used other parts in the
robot manager layer and the component layer of Fig. 1.
 We used the API of the robot manager to reuse the
existing components. HealthBot uses components from
the ROCOS and OpenRTM frameworks, both of which
are installed on the robots. We used a face detection
component of OpenRTM for detecting patients and
starting the robot application workflow. We used a speech
generation component and two vital sign measurement
sensor components, which are for blood pressure, pulse
rate, and the blood oxygen saturation level, of ROCOS.

4.3 Case Study
 We installed the two healthcare applications with
different programming languages, one in

Flex/ActionScript 3.0, and the other in HTML5 and
Javascript, on our HealthBot to evaluate the UoA robotics
software framework. We evaluated the performance of
our system focusing on the four design concepts of the
UoA robotic software framework.
 Our case study operated successfully in a simple test and
each component ran correctly, and the workflow ran
correctly. We checked the latency of each functional
process including dependency checking and the
communication between two different frameworks, and it
took less than 1 millisecond. Further tests are required;
however this does show that the design goals have been
met. Future tests will evaluate the effectiveness of our
framework in future development and deployment of real
applications.

4.3.1 Interoperability
 In this case study, we used two existing robotics
frameworks: OpenRTM and ROCOS. HealthBots
detected human faces using the face detection component
of OpenRTM, and spoke some sentences from the speech
generation component of ROCOS. HealthBots measured
three vital signs of humans using the vital sign
measurement sensors components of ROCOS. From this
result, we confirmed that the UoA robotics software
framework satisfies the first design concept,
interoperability.

4.3.2 Compatibility
 We developed two different applications, which are
operated in different environments; the Flex application is
executed independently, and the HTML application is
executed in a web browser. Both applications can be
attached to the robot manager and communicate with
various components of two frameworks in the Windows
environment by calling the API of the robot manager.
From this result, we confirmed that the UoA robotics
software framework satisfies the second design concept,
compatibility in one machine. But we did not evaluate of
other frameworks operated in different environments such

Fig. 4. Charlie, which is used for the HealthBot
platform, consists of a camera, a Pan-Tilt enabled touch
screen, speakers, microphones, ultrasonic sensors,
bumper sensors, a laser scanner, two single board
computers and a 24V Li-Polymer battery [Ahn et al.,
2014].

Fig. 5. System diagram of HealthBot. Two healthcare
applications, which used different programming
languages, can be applied to the same system.

Proceedings of Australasian Conference on Robotics and Automation, 2-4 Dec 2014, The University of Melbourne, Melbourne, Australia

as the Linux environment. So we will do more
experiments with different platforms with other
environments, in the future.

4.3.3 Support for heterogeneous applications
 We developed two different applications with different
programming languages. Both applications were applied
on the same robot platform usng the same components.
Both applications were able to use components from both
tasks including detecting people’s faces, from
OpenRTM’s face detection component, and using speech
functions and healthcare devices, from ROCOS. The
effort required to use these components in both
applications was not difficult as they can both be accessed
through use of the same API. The greatest advantage of
using our framework is that it hides the
framework-specific procedures of receiving the data while
giving freedom to access the data from components of
different frameworks. From these results, we confirmed
that the UoA robotics software framework satisfies the
third design concept, support for heterogeneous
applications.

4.3.4 Dynamic monitoring and control
 Our API allowed two applications to control the status of
the component connections. The HealthBots also could
check the connection and notify the result to applications
if any of the connections are terminated, and
automatically issue a Kill operation removing the maps.
From these results, we confirmed that the UoA robotics
software framework satisfies the last design concept,
dynamic monitoring and control.

5 Conclusions

 We designed and developed the UoA robotic software
framework that allows using various combinations of
components, packages, and libraries from the various
existing frameworks. Through our API design of, we could
benefit from the key functionalities of our software
framework including interoperability, compatibility,
support for heterogeneous applications, and dynamic
monitoring and control of the communication. We have
performed a case study where we created a healthcare
assistant robot system using two applications developed in
different programming languages and used components
from two different frameworks. For future work, we plan
to extend our framework by allowing dynamic
configuration to eliminate the effort of predefining
communication by the user. We also aim to evaluate our
system in other application domains than healthcare.

References

[Ahn et al., 2008] Ho Seok Ahn, Young Min Baek,
In-Kyu Sa, Jin Hee Na, Woo-Sung Kang, and Jin
Young Choi. Design of Reconfigurable Heterogeneous
Modular Architecture for Service Robot. Proceedings
of the IEEE International Conference on Intelligent
Robots and Systems, pages 1313-1318, 2008.

[Ahn et al., 2014] Ho Seok Ahn, I-Han Kuo, Elizabeth
Broadbent, Ngaire Kerse, Kathy Peri, Chandan Datta,
Rebecca Stafford, and Bruce A. MacDonald. Design of
a Kiosk Type Healthcare Robot System for Older
People in Private and Public Places. Proceedings of the

2014 International Conference on Simulation, Modeling,
and Programming for Autonomous Robots, page
578-589, 2014.

[Allman, 2003] M. Allman. An evaluation of XML-RPC.
ACM Sigmetrics Performance Evaluation Review,
30(4):2-11, 2003.

[Ando et al., 2008] Noriaki Ando, Takashi Suehiro, and
Tetsuo Kotoku. A Software Platform for Component
Based RT-System Development: OpenRTM-Aist.
Simulation, Modeling, and Programming for
Autonomous Robots, pages 87-98. 2008.

[Arndt et al., 2013] M. Arndt, M. Reichardt, J. Hirth,
amd K. Berns. Requirements for interoperability and
seamless integration of different robotic frameworks.
Proceedings of the Workshop on Software Development
and Integration in Robotics, Page 38-40, 2013.

[Biggs et al., 2010] G. Biggs, N. Ando, T. Kotoku.
Native Robot Software Framework Inter-operation.
Simulation, Modeling, and Programming for
Autonomous Robots, pages 180-191, 2010.

[Black et al., 2012] A. W. Black, P. Taylor, and R. Caley.
The festival speech synthesis system.
http://www.cstr.ed.ac.uk/projects/festival, 2012.

[Datta et al., 2013] Chandan Datta, Hong Yul Yang,
I-Han Kuo, Elizabeth Broadbent, and Bruce A
MacDonald. Software platform design for personal
service robots in healthcare. Proceedings of the IEEE
International Conference on Robotics, Automation and
Mechatronics, page 156-161, 2013.

[Herman et al., 2013] B. Herman, M. Klotzbücher, N.
Hochgeschwender, G. Kraetzschmarthemis, L.
Gherardi, and D. Brugali. The BRICS component
model: a model-based development paradigm for
complex robotics software systems. Proceedings of the
Annual ACM Symposium on Applied Computing, pages
1758-1764, 2013.

[Igic et al., 2009] Igic A, Watson CI, Teutenberg J,
Broadbent E, Tamagawa R, and B. A. MacDonald.
Towards a flexible platform for voice accent and
expression selection on a healthcare robot. Proceedings
of the Australasian Language Technology Association
Workshop, 2009.

[Jang et al., 2010] Choulsoo Jang, Seung-Ik Lee,
Seung-Woog Jung, Byoungyoul Song, Rockwon Kim,
Sunghoon Kim, and Cheol-Hoon Lee. OPRoS: A New
Component-Based Robot Software Platform. ETRI
Journal, 32(5):646-656, 2010.

[Jang et al., 2012] C. Jang, B. Song, S. Jung and S. Kim.
A heterogeneous coupling scheme of OPRoS
component framework with ROS. Proceedings of the
RAS/EMBS International Conference on Ubiquitous
Robots and Ambient Intelligence, page 298-301, 2012.

[Jayawardena et al., 2012] C. Jayawardena, I. Kuo, C.
Datta, R. Q. Stafford, E. Broadbent, and Bruce. A.
MacDonald. Design, implementation and field tests of a
socially assistive robot for the elderly: HealthBot
Version 2. Proceedings of the RAS/EMBS International
Conference on Biomedical Robotics and
Biomechatronics, page 1837-1842, 2012.

[Lubbers et al., 2010] Peter Lubbers, and Frank Greco.
HTML 5 web sockets: A quantum leap in scalability for
the web. SOA World Magazine, 2010. [Ortiz et al.,
2014] Francisco J. Ortiz, Carlos C. Insaurralde, Diego
Alonso, Francisco Sánchez, and Yvan R. Petillot.
Model-driven analysis and design for software
development of autonomous underwater vehicles.

Proceedings of Australasian Conference on Robotics and Automation, 2-4 Dec 2014, The University of Melbourne, Melbourne, Australia

Robotica, pages 1-20, 2014.
[Makarenko et al., 2007] A. Makarenko, A. Brooks, and T.

Kaupp. On the Benefits of Making Robotic Software
Frameworks Thin. Proceedings of the IEEE
International Conference on Intelligent Robots and
Systems, 2007.

[Morckos et al., 2014] Michael Morckos, and
Fakhreddine Karray. Axon: A Middleware for Robotic
Platforms in an Experimental Environment. Advances
in Intelligent Systems and Computing: Robot
Intelligence Technology and Applications 2,
274:911-926, 2014.

[Quigley et al., 2009] M. Quigley, K. Conley, B. Gerkey,
J. Faust, T. Foote, J. Leibs, E. Berger R. Wheeler, and
A. Ng. ROS: an open-source Robot Operating System.
Proceedings of the ICRA workshop on open source
software, 2009.

[Robinson et al., 2012] Hayley Robinson, Bruce A.
MacDonald, Ngaire Kerse, and Elizabeth Broadbent.

Suitability of Healthcare Robots for a Dementia Unit
and Suggested Improvements. Journal of the American
Medical Directors Association, 14(1):34-40, 2012.

[Robinson et al., 2013] Hayley Robinson, Bruce A.
MacDonald, Ngaire Kerse, and Elizabeth Broadbent.
The Psychosocial Effects of a Companion Robot: A
Randomized Controlled Trial. Journal of the American
Medical Directors Association, 14(9):661–667, 2013.

[Stafford et al., 2014] Rebecca Q. Stafford, Bruce A.
MacDonald, Chandimal Jayawardena, Daniel M.
Wegner, and Elizabeth Broadbent. Does the Robot
Have a Mind? Mind Perception and Attitudes Towards
Robots Predict Use of an Eldercare Robot.
International Journal of Social Robotics, 6(1):17-32,
2014.

[Watson et al., 2009] C. I. Watson, J. Teutenberg, L.
Thompson, S. Roehling, and A. Igic. How to build a
New Zealand voice. Proceedings of the New Zealand
Linguistic Society Conference, 2009.

