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Abstract 

While there are a number of good software 
frameworks for robotics applications, these 
changes over time and it is not so easy to create 
applications that use multiple frameworks. In this 
paper, we present the design of an Application 
Programming Interface (API) for our UoA 
Robotic Software Framework, a heterogeneous 
robot development framework that allows 
interoperation between existing component- 
based frameworks such as ROS, ROCOS, and 
OpenRTM, and also reduces the impact of 
changing frameworks on development of robotic 
applications. In the development of this API, 
four key design concepts are: interoperability, 
compatibility, support for heterogeneous 
applications, and dynamic monitoring and 
control. The API can be used for developing 
different applications with different frameworks, 
using the same robot hardware platforms and 
components, with minimal development of 
additional procedures. To evaluate the 
effectiveness of our framework, we developed 
two case studies, which are both healthcare 
applications with different programming 
languages and frameworks, and then applied 
them to two robot platforms with the same 
specifications. 
  

1 Introduction 

 Development of robot systems has always been a 
complex challenge because integration and development 
of complex components requires significant time and 
effort [Ahn et al., 2008]. However with requirements for 
robotic systems growing more complex, researchers have 
developed component-based software frameworks 
[Herman et al., 2013] such as ROS [Quigley et al., 2009], 
Open-RTM [Ando et al., 2008], OPROS [Jang et al., 
2010], and ROCOS [Jayawardena et al., 2012]. These 
component-based frameworks provide libraries and 
distributed communications abilities, enhance the 
opportunities for developers to reuse code and 
components, and provide help for development, 
integration and deployment of robotic software systems. 
 Many component-based frameworks are open source 
frameworks, so researchers develop intelligent 

components, such as image recognition, speech 
recognition, and navigation, and share them with other 
researchers. But there are several limitations. Some 
operate on specific operating systems, for example, ROS 
runs mainly in a Linux environment, and ROCOS mainly 
in a Windows environment, while others, such as 
Open-RTM, OPROS, and Orocos are supported by both 
Windows and Linux. ROS has a Windows version 
WinROS, but its packages are different from the ones in 
ROS. Overall the frameworks are dependent on a specific 
development environment, and researchers and 
developers must re-write intelligent components and 
applications in different ways to transfer them from one 
framework to another. This can be difficult and 
time-consuming. In addition when a new version of a 
framework is created, or a framework becomes obsolete 
and another new one becomes popular, applications must 
be updated.  
 Recently, there have been some efforts to allow 
interoperation between two different frameworks, such as 
ROS-OpenRTM [Biggs et al., 2010] and ROS-OPROS 
[Jang et al., 2012] Most of implementations were done by 
translating the messages and protocol through some kind 
of bridging software to channel between the two 
frameworks. Although they allow researchers to use 
components of two different frameworks at the same time, 
they only provide one-to-one interaction of the specified 
frameworks, and hence as frameworks are developed 
there will be a need for more bridges to be created. 
Therefore we should develop these kinds of frameworks 
repeatedly when we need to combine different 
combinations for our robots.  
 Researchers and developers are faced with a few key 
different frameworks to choose from and the prospect of 
future changes as one framework becomes obsolete and 
others become popular. Rather than creating a new 
framework for our needs, we designed the UoA robotic 
software framework, which gives developers access to 
multiple existing software frameworks, including 
components, packages, libraries and distributed services 
from multiple combinations of existing frameworks. We 
can relatively easily add new frameworks including those 
developed in the future, as well as delete old frameworks. 
Our framework also supports the use of different versions 
of the same framework; it isolates the components in one 
version from those in another. For using various 
components, we designed a robot manager, which 
manages the connections between applications and 
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components of frameworks. We designed the API of the 
robot manager for using various components of 
frameworks, so researchers can develop various 
applications without modifying those components. In this 
paper, we focus on the API design of the robot manager. 
 This paper is organised as follows. We describe concepts 
of our robotic software framework in Section 2, and 
introduce the design of our robotic software framework in 
Section 3. We present an experimental robot platform 
HealthBot and two case studies in Section 4. Finally, we 
conclude this paper in Section 5.  

2 Concept of UoA Robotic SW Framework 

2.1 Limitations 
 Like many other researchers, in our research laboratory 
we have many robots, with several robotics frameworks, 
which are used in various robot applications. Like others 
we seek to reuse software for efficiency, and to integrate 
applications with different robots working together. They 
are operated very well, but there are several limitations. 
Firstly, code used for any framework is often restricted 
only to the specific framework the code was implemented 
in. To migrate a component from one framework to 
another framework, the component must be rewritten to 
the API of the new framework. This is especially a 
problem as there are risks of frameworks being 
discontinued, rendering the old code useless until a 
solution for compatibility is implemented. 
 Some frameworks such as ROS have software 
restrictions on applications such as the limited language 
support and platform restrictions, and all have a defined 
API. Hence, in order to migrate a component from one 
framework to another, the component needs to be 
modified to be compatible with these requirements such 
as the operating system, in some cases creating large 
efforts for the developers. 
 Some components are only designed for use within a 
single framework, such as sensor drivers. In order to use 
an implementation of a component using a different 
framework, new software has to be developed to create 
functionality for the target framework. In some cases 
efforts are made to make drivers and other key 
components portable across frameworks, such as Gearbox 
[Makarenko et al., 2007], which argues for a thin 
framework with refactored code components at the lower 
levels. In this paper, we take a different approach, 
providing integration at a higher level. 
 Usually for each different kind of robot, there is one 
robotic framework used to develop software. To 
complicate the development process, there is a large 
learning curve associated with each robot framework. 
Hence, in order to migrate an application to another robot 
system, the developer may be required to learn both of the 
frameworks. Overall, a considerable reimplementation 
effort may be required to port an old application suite to a 
new framework, during which time the operational ability 
may be significantly reduced. 

2.2 Key Concepts 
 The main focus of our design is to create a robotic 
software framework that allows interoperation among 
various existing component-based frameworks, and is 
extensible to future frameworks with a minimum of effort. 
Thus we can accommodate new frameworks in our 

development roadmap with a minimum of effort at any 
one time. An important part of our design is to design our 
API to control robots’ hardware and use components, 
packages, and libraries available in any framework. In 
addition, it is also important to define methods in the 
robot manager’s API to dynamically identify, classify and 
monitor the connected robot frameworks that are available 
for requests from applications. For this, our design 
includes the following functions.  
 

1) Interoperability: for any robot the developer of 
an application should be allowed to choose the 
components and packages from any of the 
frameworks available. If there is a service that 
requires use of multiple components across 
different frameworks, the robot manager should 
be able to determine whether or not these 
components are compatible with each other.  
 

2) Compatibility: use of the UoA framework should 
not be restricted to a specific platform or 
environment but rather should function with 
frameworks in various platforms or 
environments.  
 

3) Support for heterogeneous applications: the UoA 
framework should be accessible by applications 
from heterogeneous environments. The 
communication protocol should be easily 
implemented in heterogeneous applications, 
which can be executed in various environments 
and use different frameworks. 
 

4) Dynamic monitoring and control: the API should 
provide a method for controlling and managing 
the status of each data flow connection. 

3 Design of UoA Robotic SW Framework  

 We designed the UoA robotic software framework based 
on the four key concepts. It allows researchers to develop 
different applications with different frameworks by using 
the API of the robot manager, which manages the 
connections to several frameworks. 

3.1 Overall Architecture  
 The UoA robotic software framework consists of three 
layers as shown in Fig. 1: an application layer, a robot 
manager layer, and a component layer. We consulted 
Bruyninckx’s principle of separation of concern in 
robotics design [Herman et al., 2013], which separates the 
functionalities in levels of coordination, configuration, 
computation and communication coupled into 
composition of the features. The application layer 
comprises the user applications and communication 
interface to define the application logic of the developers 
by sending and receiving data from the components. The 
application is able to interact with the robot manager layer 
using the predefined API, using a combination of 
WebSocket connections and JSON messages through the 
communication interface. The communication interface 
has the role of channeling between the user application 
and the robot software framework, and any type of 
platform can be used as the application layer. Therefore, 
the client application has an interface defining the input 
and output methods as well as communication functions 
for sending the requests from interactions with users to 
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the robot manager and obtaining the results. The main 
communication between the client and the robot manager 
must work consistently across multiple platforms, so we 
use web sockets [Lubbers et al., 2010], which provide full 
duplex communication over a single TCP connection and 
allow the client to be independent of any platform, 
making it scalable. Then the application makes a request 
call for services using the API via the robot manager 
layer. 
 The robot manager layer is responsible for monitoring, 
mapping and channeling the communication among the 
components of different frameworks. The robot manager 
consists of two modules: a robot manager core that 
provides status monitoring, and a configuration file that 
includes priority and dependency of the API. The 
component layer includes various robotic frameworks, 
such as ROS and OpenRTM, and their components that 
are connected to the robot manager. The components are 
able to provide interaction with the robot manager layer 
through bridges, which provide translations of the internal 
communication of the framework to a generic format and 
vice versa, for intercommunication between the 
frameworks.  

3.2 Robot Manager  
 There are three main roles of the robot manager:  
 

1) managing the status of each connected 
framework;  
 

2) mapping the higher level API to the framework 
functions;  
 

3) transferring the data from framework to 
framework.  
 

To perform these roles, the robot manager uses two 
modules: a robot manager core and a configuration file. 
The configuration file is responsible for mapping the API. 
It contains a table of the available robotic components for 
each robotic framework, which specifies priorities, 

required input arguments and outputs to each component 
which are mapped to the high level API to the clients. 
Hence, when the robot manager layer receives a request 
from the application layer to use a certain function, it will 
check the configuration table to see if that call is valid and 
translate the higher level API calls to the component 
specific API.  
 Fig. 2 shows the procedure for API calls based on the 
configuration file. When the robot manager recevics a call 
from the application to call a faceRecognition function, 
the robot manager searches for the details of the face 
recognition function from the configuration file. Then it 
selects the component that has the highest priority, and 
checks dependencies. If the selected component has the 
required dependency, it generates the list of dependencies 
required to start the faceRecognition function. This is then 
passed to the robot manager core to be validated regarding 
whether the operation will work.  
 The robot manager core, which is responsible for 
managing the status of each connection, sets up the 
communication link and forwards the request from the 
application to the appropriate frameworks. It also registers 
the connections with the list of the current running maps. 
The list is used to manage the various types of 
connections by keeping the track of the run-time status of 
each bridge and the data flow with the frameworks that 
have been registered. The messaging format in the robot 
manager layer consists of JSON format as a generic form 
of communication between the frameworks. In order for 
the components to operate, the robot manager must share 
common data types, which are message types 
communicating among components [Arndt et al., 2013]. 
By JSON format, the robot manager can transfer the 
message among frameworks and allow the message to be 
transformed into the message class of the native 
framework in a light-weight communication. As 
previously mentioned, we validate the interoperability 
after generating the list by comparing the message 
structure that is transformed in JSON format. The bridge 
is responsible for translating the messages of the 
individual format into generic JSON format.  

3.3 API Design  
 In order to design the API of our robot manager, we 
analysed API structures and protocols of existing 

 

 
 
Fig. 2. API calling procedure based on the 
configuration file in the robot manager.  

 

 
 
Fig. 1. Architecture of the UoA robotic software 
framework, which consists of three layers: application, 
robot manager, and component.  
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component-based frameworks. In particular, we chose 
three different types of existing robotic framework for 
analysis: ROS, ROCOS, and OpenRTM, which are the 
most used robotics frameworks. We analysed the required 
elements to establish a data port and the types of 
messages required for input and output. We have chosen 
these three types of middleware since each has its own 
representative model of communication; ROS using a 
channel model, OpenRTM using CORBA and ROCOS 
using plain messaging. 
 
3.3.1 ROS 
 ROS is an open-source framework developed by Willow 
Garage. Each ROS component known as a “node” can 
communicate with other nodes by establishing a 
communication channel. Each of ROS’s communications 
channels comprises two parts: “topic” and message types. 
The topic is a string that defines the name of the 
communication channel which is managed in the ROS 
master node, a nameserver containing a list of currently 
established nodes and topics within the ROS environment. 
Furthermore each topic is strongly typed by message 
types that only allows either publishing or subscribing to 
messages of that type. Furthermore in ROS there are 2 
types of communication, which use 1) a  publisher and 
subscriber model for continuous data flow and 2) ROS 
services, ROS’s implementation of remote procedure call 
request and reply interactions. 
 
3.3.2 ROCOS 
 ROCOS is a proprietary middleware developed by Yujin 
Robot, Korea, that provides application contents for the 
company’s robots, such as iRobi and Charlie. ROCOS 
uses an API encoded in XML. While it is proprietary 
software with a hidden implementation, it is able to 
support both data flow and service typed messages. The 
input and output structures of ROCOS vary from API to 
API. For the robot manager context, we have 
implemented a class for each different message according 
to the name of the each API. 
 
3.3.3 OpenRTM  
 OpenRTM is a middleware implementation of 
RT-middleware developed by AIST, Japan. OpenRTM’s 
component is known as an RT-Component or RTC, which 
uses a finite state machine model to control its operations 
to send or receive data flows. Each state has its own 
characteristic ports to its interface, sending or receiving 
different kinds of messages depending on the state. The 

states are also controlled dynamically over runtime 
depending on the execution defined by the user. The 
previous version of OpenRTM used an omniORB 
implementation of CORBA to communicate and it 
therefore is available in a variety of languages for 
multiple platforms [Ortiz et al., 2014]. The new version of 
OpenRTM uses ICE instead of CORBA [Morckos et al., 
2014].  
 
3.3.4 UoA Robotic Software Framework 
 The API design is a critical task in order to fulfill the 
four key cocepts as it requires a generic form of 
communication and the ability to connect to the other 
frameworks. Generally, communication of existing 
frameworks consists of message-based communication in 
two forms: a data port model that requires continuous 
connection maintenance for input or output data flow, and 
a service model that is a remote procedure call to provide 
results, which does not require the connection to be 
sustained once the results have returned. However in 
addition to data flow information, more information is 
needed in order to further handle the data flow, such as 
forwarding the dependant stream as input of another 
component. By wrapping the transmitted data with 
lightweight headers, we have created control messages 
that are structured in a way to identify components and 
the framework. Table 1 shows the messaging structure of 
the robot manager. The client is able to control the 
connection by specifying the op field using either a 
Request or Kill command to establish or terminate the 
dataflow connection respectively. In order to request for a 
connection to a component, the control message must 
specify the functionality which is defined in the type field 
of the message. The jsonMessage field is the message that 
contains the data from or to the component in lightweight 
JSON format. 

3.4 Control Procedures  
 In order to request a component connection, the 
application is required to make the Request command for 
some kind of functionality using the high level API. The 
high level API will be defined in the configuration file 
which will be mapped to a framework specific 
components. When a service is requested through request 
messages, the robot manager will refer to the table in the 
configuration file and check the required dependencies. 
The dependencies can be satisfied if the message structure 
of the output is same as the message structure of the input 
component. Hence, the robot manager makes an 
XML-RPC [Allman, 2003] request to get the message 
structure of the component to the bridge layer, which 
contains a database of the message structures.  
 For example in Fig. 2, in order for face recognition to 
work, it requires a face detection component that 
respectively also requires a camera component. Fig. 3 
shows the overall procedure of the Request command. 
When the robot manager receives a request message for 
the face recognition function from the application, it will 
generate a dependency list with dependent components; 
face detection and camera. If the input of the dependent 
component matches with the output of the depended 
component, the robot manager checks dependency is 
satisfied. Hence the message structure will be checked 
between a) the output of the camera function and the input 
of the face detection function, then b) the output of the 
face detection function and the face recognition function, 

 
Table 1. UoA robotics Software Software Framwork 

Messaging Structure. 
 

Op The operation instruction. 

type (client to 
RM) 

Function type to be requested or used. 

type(RM to 
Bridge) 

A list of strings which are required to communicate 
with components. In ROS these are names of topic 
and message types, and in OpenRTM this is the 
name of the message types and execution period. 

jsonMeesage 
The context data formatted in JSON. This applies 
to both input and output. 
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which together verifies the components are able to talk 
with each other. If all of the dependencies are satisfied, 
the robot manager forwards the request call to the bridge, 
and registers the connection to a status map.  
 On receving the request messages, the bridge will open a 
new commnuication channel that can be used to 
communicate with that specific component. The bridge 
also registers connections to a map such that, on receiving 
any messages from the component, it knows which 
communication channel it must send back to. On 
invocation of the Kill command, the robot manager will 
first forward the connection to the bridge and delete the 
registered information and close down the communication 
channel. Then on receiving the command, the bridge will 
also shut down the communication of the component. 

4 Experiment: Case Study 

 We developed two HealthBots with healthcare 
applications based on the robot manager framework. The 
applications of two HealthBots are developed with 
different programming languages and frameworks, with 
the same functionalities, using the APIs of the UoA 
robotic software framework. To evaluate our framework, 
we developed a general case study with the two 
HealthBots. 

4.1 System Overview  
 Fig. 4 shows the HealthBot, which is based on a kiosk 
type robot platform from Yujin Robot in South Korea and 
is originally designed as a serving robot in cafes and 
restaurants, and for assisting teachers in schools; it has a 
friendly appearance and tray for carrying items. The 
HealthBot is a differential drive mobile robot 1.2 meters 
high, powered by a 24V Li-Polymer battery, and consists 
of a camera, a rotatable touch screen, speakers, 
microphones, ultrasonic sensors, bumper sensors, a laser 
range finder and two single board computers. User 
responses were received via the touch screen and 
HealthBot responds to participants with synthesized 
speech, visual output on the screen, and movements. The 
touch screen helps the older people who have hearing or 
speaking difficulties by showing messages or pictures. 
HealthBot’s synthetic speech is generated through a 
diphone concatenation type synthesis implemented with 
the Festival speech synthesis system [Black et al., 2012] 
and used a New Zealand accented diphone voice 
developed at the University of Auckland [Watson et al., 
2009]. Expression was added to the synthetic speech 
through an intonation modeling technique [Igic et al., 
2009] called ‘Say Emotional’.  
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Fig. 3. Overall procedure of Request command. 
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4.2 Healthcare Application  
 The application of the HealthBot is originally developed 
by our HealthBot project [Robinson et al., 2012; 
Robinson et al., 2013; Datta et al., 2013; Stafford et al., 
2014]. It was deployed in a general practice of hospital to 
capture vital signs information, in order to save nurses’ 
time. HealthBot measures patients’ vital signs, such as 
blood pressure, pulse rate, and the blood oxygen 
saturation level, and transfers the data over webservices to 
RoboGen, which is our medical server. We developed this 
application using Flex/ActionScript 3.0, which is 
becoming an outdated technology especially with growing 
mobile markets and its limited support in Linux 
environments.  
 Therefore, we developed another application, which has 
the same functionalities as our Flex/ActionScript-based 
application, using pure HTML and Javascript. Actually 
developing new applications with different programming 
languages and tools requires time-consumming effort on 
developing similar systems. However, we did not need to 
develop all of them again, because we used our new 
robotic software framework for the new application. 
Fig. 5 shows the system diagram of our two different 
applications. We developed only the top level user 
interface as a new component, and used other parts in the 
robot manager layer and the component layer of Fig. 1.  
 We used the API of the robot manager to reuse the 
existing components. HealthBot uses components from 
the ROCOS and OpenRTM frameworks, both of which 
are installed on the robots. We used a face detection 
component of OpenRTM for detecting patients and 
starting the robot application workflow. We used a speech 
generation component and two vital sign measurement 
sensor components, which are for blood pressure, pulse 
rate, and the blood oxygen saturation level, of ROCOS.  

4.3 Case Study  
 We installed the two healthcare applications with 
different programming languages, one in 

Flex/ActionScript 3.0, and the other in HTML5 and 
Javascript, on our HealthBot to evaluate the UoA robotics 
software framework. We evaluated the performance of 
our system focusing on the four design concepts of the 
UoA robotic software framework. 
 Our case study operated successfully in a simple test and 
each component ran correctly, and the workflow ran 
correctly. We checked the latency of each functional 
process including dependency checking and the 
communication between two different frameworks, and it 
took less than 1 millisecond. Further tests are required; 
however this does show that the design goals have been 
met. Future tests will evaluate the effectiveness of our 
framework in future development and deployment of real 
applications.  
 
4.3.1 Interoperability 
 In this case study, we used two existing robotics 
frameworks: OpenRTM and ROCOS. HealthBots 
detected human faces using the face detection component 
of OpenRTM, and spoke some sentences from the speech 
generation component of ROCOS. HealthBots measured 
three vital signs of humans using the vital sign 
measurement sensors components of ROCOS. From this 
result, we confirmed that the UoA robotics software 
framework satisfies the first design concept, 
interoperability. 
 
4.3.2 Compatibility 
 We developed two different applications, which are 
operated in different environments; the Flex application is 
executed independently, and the HTML application is 
executed in a web browser. Both applications can be 
attached to the robot manager and communicate with 
various components of two frameworks in the Windows 
environment by calling the API of the robot manager. 
From this result, we confirmed that the UoA robotics 
software framework satisfies the second design concept, 
compatibility in one machine. But we did not evaluate of 
other frameworks operated in different environments such 

 

 
 
Fig. 4. Charlie, which is used for the HealthBot 
platform, consists of a camera, a Pan-Tilt enabled touch 
screen, speakers, microphones, ultrasonic sensors, 
bumper sensors, a laser scanner, two single board 
computers and a 24V Li-Polymer battery [Ahn et al., 
2014]. 

 

 
Fig. 5. System diagram of HealthBot. Two healthcare 
applications, which used different programming 
languages, can be applied to the same system.  
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as the Linux environment. So we will do more 
experiments with different platforms with other 
environments, in the future.   
 
4.3.3 Support for heterogeneous applications 
 We developed two different applications with different 
programming languages. Both applications were applied 
on the same robot platform usng the same components. 
Both applications were able to use components from both 
tasks including detecting people’s faces, from 
OpenRTM’s face detection component, and using speech 
functions and healthcare devices, from ROCOS. The 
effort required to use these components in both 
applications was not difficult as they can both be accessed 
through use of the same API. The greatest advantage of 
using our framework is that it hides the 
framework-specific procedures of receiving the data while 
giving freedom to access the data from components of 
different frameworks. From these results, we confirmed 
that the UoA robotics software framework satisfies the 
third design concept, support for heterogeneous 
applications. 
 
4.3.4 Dynamic monitoring and control 
 Our API allowed two applications to control the status of 
the component connections. The HealthBots also could 
check the connection and notify the result to applications 
if any of the connections are terminated, and 
automatically issue a Kill operation removing the maps. 
From these results, we confirmed that the UoA robotics 
software framework satisfies the last design concept, 
dynamic monitoring and control. 

5 Conclusions  

 We designed and developed the UoA robotic software 
framework that allows using various combinations of 
components, packages, and libraries from the various 
existing frameworks. Through our API design of, we could 
benefit from the key functionalities of our software 
framework including interoperability, compatibility, 
support for heterogeneous applications, and dynamic 
monitoring and control of the communication. We have 
performed a case study where we created a healthcare 
assistant robot system using two applications developed in 
different programming languages and used components 
from two different frameworks. For future work, we plan 
to extend our framework by allowing dynamic 
configuration to eliminate the effort of predefining 
communication by the user. We also aim to evaluate our 
system in other application domains than healthcare.  
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