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Abstract

This paper presents an extension to the
Rapidly-exploring Random Tree (RRT) al-
gorithm applied to drifting autonomous un-
derwater vehicles. The proposed algorithm
is able to plan paths that guarantee con-
vergence in the presence of time-varying
ocean dynamics. The method utilizes 4-
Dimensional ocean model prediction data as
an evolving basis for expanding the tree from
the start location to the goal. The perfor-
mance of the proposed method is validated
through Monte-Carlo simulations. Results
illustrate the importance of the temporal
variance in path execution and demonstrate
the convergence performance of the proposed
methods.

1 Introduction

Collection of long-term data is necessary to enhance
our understanding of large-scale, dynamic ocean pro-
cesses, as well as their complex spatio-temporal vari-
ability. Such long-term data gathering requires a per-
sistent presence in the environment. One method to
capture this time-series data is through the use of Au-
tonomous Underwater Vehicles (AUVs) that are capa-
ble of long-period deployments (on the order of weeks
to months), e.g., gliders [1, 2] and profiling floats [3].
These vehicles decrease their actuation capability to
save power for persistent navigation. However, with
the compromise of actuation, it is challenging to reli-
ably achieve set-point trajectories due to significant
external disturbances, e.g., ocean currents. There-
fore, a path planning strategy is required for such
actuation-reduced aquatic vehicles that is able to pre-
dict and utilize these extreme disturbances.

Current work on path planning with uncertainties
for persistent platforms is primarily focused on under-
water gliders [4–8]. There are limited works consid-
ering path planning for profiling floats [9–11]. Recent
research has focused on applications of profiling floats
for physical oceanography and underwater imaging
[12]. Nevertheless, this prior research has been the
motivation to consider operation of profiling floats in
highly-dynamic, coastal environments, or restrained
areas like embayments. When operating in such envi-
ronments, the vehicles are likely to be diverted away
from the goal or the predetermined sensing location

due to constant perturbation by external forces gen-
erated by spatio-temporally varying currents.

This paper presents a convergence-guaranteed path
planning method for persistent ocean monitoring that
takes into account both disturbances of ocean currents
and their time-dependency characteristic. The ap-
proach is inspired by the ideas from Rapidly-exploring
Random Tree (RRT) and the work of Hsu et al. [13]
so that time-dependency and efficiency are consid-
ered. Due to the vehicle’s operation in highly dy-
namic environments, a controllability verification step
is included in the algorithm to ensure the conver-
gence of the algorithm. Analysis for convergence is
also provided. To the best of the authors’ knowledge,
this is the first paper dealing with the convergence-
ensured, time-varying sampling-based algorithm un-
der dynamic disturbances.

2 Background

Path planning for standard actuated AUVs (with pro-
pellers and control surfaces) in the presence of wa-
ter currents has been considerably researched over the
last decade. A number of approaches have been pre-
sented, such as Linear Optimization and Mixed Inte-
ger Linear Programming [14, 15], and A* search [16].
However, these works mostly assume vehicles operat-
ing in a horizontal 2-Dimensional (2D) plane.

Alvarez and Caiti [17] utilized numerical integration
to predict rough paths for AUVs subject to ocean cur-
rents. Extending the work in [17], Alvarez et al. [18]
developed a Genetic Algorithm (GA)-based path plan-
ning that takes into account the space-time structure
of the ambient environment. In Alvarez et al. [18] the
authors assume that the AUV travels at a constant
speed with respect to the sea floor, i.e., the vehicle
needs to vary its speed according to the current field
so as to maintain its constant total velocity along the
whole journey. In a similar scenario, Garau et al. [19]
used the A* algorithm to search for a minimum-time
path that optimizes energy consumption. Garau et al.
[20] continued to apply the algorithm in the previous
work in the more realistic situation of current fields.
However, these works assume quasi steady-state ocean
currents and the AUVs propulsive thrust is constant
without actuation limits. These assumptions break-
down in real-ocean environments, particularly in the
presence of strong ocean currents where many trajec-
tories can become infeasible.

Addressing the problem of vehicle actuation lim-
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its, Kruger et al. [21] use a multi-dimensional cost
function to generate minimum energy, time optimum,
continuous paths in estuarine environments. Inspired
by this work, Witt and Dunbabin [22] dealt with the
planning problem of generating time and energy opti-
mum trajectories for actuated AUVs in dynamic ocean
environments. This research showed the potential
of utilizing tidal currents in such a way that vehicle
range, endurance, and waypoint tracking are signifi-
cantly improved. Considering all these works, there is
still little research on path planning algorithms that
examine the improvement of navigation for profiling
drifters based on the controllability of these vehicles.

Sampling-based path planning algorithms such as
the probabilistic roadmap (PRM) [23] and Rapidly-
exploring Random Trees (RRTs) [24] are becoming
increasingly implemented. These algorithms are well-
known for their probabilistic completeness charac-
teristic, i.e., rapidly exploring the space of interest
and quickly returning a feasible solution if one ex-
ists. PRM* and RRT* have been proposed to gen-
erate paths that are provably asymptotically optimal
as the computation time increases [25]. Extensions of
these sampling-based algorithms have also been devel-
oped to tackle uncertainty whilst maintaining asymp-
totic optimality [26]. These algorithms only consider
robots working without disturbances and do not deal
with extreme disturbances1 whose magnitude might
be at the same order as that of the robot’s controls.
As such, there will be no guarantee for convergence of
the algorithms in such scenarios and cannot be applied
to directly to solve the motion planning problem.

Attempting to apply sampling-based algorithms in
extreme conditions, Rao and Williams [27] used RRTs
for determining energy-optimal paths that consider
ocean current fields. A comparison of paths gener-
ated by the RRT and grid-based methods is presented
demonstrating that RRTs offer an improvement in
avoiding high-energy, shallow regions. However, [27]
assumes that the ocean currents are time-invariant.
Thus, this technique, to some extent, is unrealistic
since ocean current magnitude and direction signifi-
cantly vary temporally [28].

Motivated by the ideas from [13], a novel algorithm
is proposed here that addresses extreme disturbances
on underwater vehicles, and guarantees convergence
to the end goal. The proposed methodology is ap-
plied to the general case of path planning for profiling
floats. This class of vehicle is considered the general
case since profilers are minimally-actuated, as com-
pared to standard AUVs with thrusters and control
surfaces. Therefore, the algorithm can be extended to
other AUVs having more control authority.

3 Equations of Motion

A profiling float is an underwater vehicle that freely
drifts with the ambient currents, and can actively
change its depth during a mission by adjusting its
buoyancy.

1Extreme disturbance is defined as external forces from
ambient environment having the same order of magnitude
as that of the internal available control force.

Figure 1: A
profiling float
prototype man-
ufactured by
Teledyne Webb
Research, Inc.

Intelligently controlling
depth allows the profiler to
choose appropriate ocean
currents to carry the vehicle
to a desired destination. An
example profiling float is shown
in Figure 1, with a detailed
description found in [11].

Movement of the profiling
float is determined primarily
by ocean currents. The equa-
tions of motion of this vehi-
cle involve both the ocean dy-
namics and the vehicle kine-
matics. Here, we present both
the oceanic propulsion, referred
to as Ocean Model Predictions
(OMPs), and the kinematics of the float.

3.1 Ocean Model Prediction

The path planning method proposed in this paper is
built upon the predictions of a regional ocean model.
The ocean model utilized is the regional ocean model
system (ROMS). Details on ROMS can be referenced
in Shchepetkin and McWilliams [28, 29].

The ROMS data to be used in this paper is gener-
ated by the Jet Propulsion Laboratory (JPL), Cali-
fornia Institute of Technology. ROMS ultimately pro-
vides hindcasts, nowcasts and hourly forecasts (up to
72 hours) for the Southern Californian Bight (SBC)
at various depths. Particularly, ROMS data divides
non-uniformly the vertical direction into 24 discrete
depths, ranging from 0 to 2000 m. Consequently,
ROMS data is presented in four dimensions as it gives
predictions at different points of time and at various
horizontal and vertical locations.

3.2 Kinematics of Profiling Floats

Provided that the profiling float (underwater robot)
is able to have neutral buoyancy at a predetermined
depth, and that the centre of gravity (CG) and the
centre of buoyancy (CB) are on the same vertical axis
in the body-fixed coordinate frame B, we define the
vehicle’s state by the vector η = (b1, b2, b3)>. The
vector η depicts the position of the vehicle relative to
the inertial coordinate along longitude b1, latitude b2,
and depths b3.

Given that the ocean prediction data is presented in
discrete-time format and that the profiling float nor-
mally has unchanged control input over a single time
epoch, the motion can be considered in the discrete-
time domain. The discrete-time equations of motions
for profiling floats in Linear Time Varying state space
form are:

η̄(k + 1) = I2(k)η̄(k) + Bη̄(k)u(k) (1)

ν̄(k) = C(k)η̄(k). (2)

Here, η̄(k) = (b1(k), b2(k))T ∈ R2 is the state of
the system representing its horizontal location at time
epoch k. ν̄ stands for the system output. I2 is the 2×2
identity matrix. The output matrix C = I2.

The control input is denoted by u(k) and u
represents the depth selections of the vehicle to
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harness the appropriate ocean current. Since the
ROMS data contains 24 depth bins, we can denote
U = {u1,u2, . . . ,uj , . . . ,u24} the set of control in-
put vectors for the discrete-time system, where uj =
(0, . . . , 0, 1, 0, . . . , 0)T with unique nonzero entry j. By
specifying u in this form, the control input is bang-
bang. Moreover, a control input of u1 is interpreted as
commanding the vehicle to the ocean surface, whereas
a control input of uj ,∀j ∈ {2, ..., 24}, is understood
as commanding the profiling float to a specific depth
corresponding to the ROMS output discretisation. In
this study it was assumed the diving time of the pro-
filer is much smaller compared to the ROMS dis-
cretization and therefore could be neglected.

The input matrix Bη̄(k) is a 2 × 24 matrix giv-
ing the eastward and northward ocean velocities at
each depth at location η̄ from the ROMS model. To
obtain Bη̄(k), we interpolate a set B consisting of
4 similar matrices output from the ocean prediction
model. Each matrix is the discrete grid point of the
ocean model prediction that defines the bounding box
around the current position η̄ of the vehicle. We can
consider B a lookup table for the predicted ocean cur-
rents at a given spatiotemporal location η̄(k). In this
paper, the prediction model contains a total of 7826
grid points. Multiplication of u and interpolated sets
of currents Bη̄(k) becomes ocean currents propulsion
at time epoch k corresponding to location η̄.

4 Problem statement

The path planning problem for the profiler is to seek
control inputs u ∈ U such that the vehicle moves from
an initial configuration η0 to a final configuration ηf

along locally absolutely continuous curve γ : I 7−→ Q
when we apply such control input u. The end con-
ditions for γ is γ(0) = η0 and γ(tf ) = ηf . To steer
the vehicle, we use only depths of the vehicle as direct
control inputs. Therefore, the path planning problem
is to find the set of depths u(k) to achieve the final
state γ(tf ) as close as possible to ηf at time tf .

The choice of depth inputs is defined to be accom-
plished only when the vehicle successfully reaches the
goal destination. Section 4.1 describes a prerequisite
for this condition to be satisfied, specifically a con-
trollability check of control actions (ocean currents)
in a specific region of ocean needs to be undertaken.
If the controllability check for a region indicates that
the region is able to direct the profiler in sufficient di-
rections spanning the space, it is a fully-controllable
region.

In brief, a solution is desired that finds a path for a
profiler subject to (1) and (2) travelling from an initial
starting waypoint to a predetermined goal waypoint,
and satisfying the following conditions:

• the planned path is placed inside a fully-
controllable region.

• the planned path needs to be time-varying and
takes into account dynamical disturbances from
ocean currents of the ambient environment.

• convergence to the end goal is ensured even when
extreme disturbances exist.

4.1 Controllability Conditions

Given a profiling float and OMPs, is it possible to
steer the vehicle to any destination within finite time?
This can be considered by examining an accessibility
set, the set of all admissible motion from each system
state resulting from the depth dependent currents at
a point in space, as presented by the authors in [11].
The primary result from [11] is stated in Proposition
1 and defines the conditions for controllability.

Proposition 1. (Conditions for controllability) The
system given in Eqs. (1)-(2) is controllable if and only
if the convex hull of the accessibility set A is compact
and contains the origin.

5 Time-invariant RRT Algorithm

Algorithm 1: The time-invariant RRT algorithm
with incorporation of 4D OMP for AUV

Input: An initial waypoint η̄0 = {b10, b20}, a
target waypoint η̄f = {b1f , b2f},
predicted ROMS data, a world space (the
extracted region in ROMS)
Q = {NEcorner, SWcorner}, and the
termination ball Bη̄f ,rf .

Output: The switching sequence of depth
control inputs.

1 world ← CreateWorld(NEcorner,SWcorner)
2 zstart ← GenerateNode(η̄0,0,0,0,1)
3 zend ← GenerateNode(η̄f ,0,1)

4 V ← {zstart} ; E ← ∅ ; G← (V,E)
5 if ‖ η̄0 − η̄f ‖≤ rf then
6 path ← {zstart; zend}
7 else
8 NumPaths← 0
9 while NumPaths < 1 ∧ ¬MaxIteration do

10 [G, flag]← ExtendTree(G, zend, world)
11 NumPaths← NumPaths+ flag

12 path ← FindMinimumPath (G,zstart,zend)
13 return Depths, path

A time-invariant RRT that incorporates OMPs to
plan a path for a profiling float through a quasi-
steady ocean will firstly be presented. The construc-
tion of time-invariant RRT incorporating 4D ROMS
and depth control guidance is summarised in Algo-
rithm 1.

The first step requires the creation of a world space
that is large enough to contain the initial and target
waypoints. This world space specified by the South
Western and North Eastern corners as shown in Figure
2 is situated in the region which is verified by the
controllability-check process to have varied directions
of ocean currents.

The GenerateNode function in Algorithm 1 is used
to create a tree node. Each RRT node is a structure
consisting of six fields. The first two contain the lat-
itudinal and longitudinal coordinates with the third
field being a flag signalling the node in the tree that
connects directly to the EndNode. The fourth stores a
cost associated with the node (the length of path from
StartNode). The fifth field is a back-tracking pointer
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pointing to the front node, with the sixth being the
depth relating the ROMS depth index corresponding
to the ocean current that propels the vehicle towards
the EndNode. Therefore, the constructed RRT tree is
an array whose elements are six-field structures.

Before expanding the tree, the algorithm checks to
see if the start node and end node are connectible by
an ocean current propulsion. Particularly, if StartN-
ode and EndNode falls within the ball Bη̄f ,rf centred
at the EndNode with radius rf , the start node can
connect directly to the end node without attempting
to expand the tree.

If the start node is not connectible directly to the
end node immediately, then the function ExtendTree
will be activated. Figure 2 demonstrates the develop-
ment of a time-invariant RRT tree when ExtendTree
is called. Details of the ExtendTree function are pre-
sented in Algorithm 2. As this section is creating a
time-invariant path planner, it assumes the ocean cur-
rents do not vary temporally over the planning hori-
zon.

Figure 2: Tree expansion for the time-invariant algo-
rithm illustrates how to extend znearest to zrand.

In Algorithm 2, at each loop epoch the function
ExtendTree randomly generates a point in the hori-
zontal plane zrand. It searches all nodes in the tree
for a node znearest that is nearest to the random node.
At each nearest node there are discrete layers of ocean
currents which flows along different directions. Such
oceanic layers are also time-dependent. If the assump-
tion that ocean currents do not vary with time is
upheld, Algorithm 2 will then choose a depth that
yields a maximal ocean current from the nearest node
znearest towards the random node zrand. The pro-
cess of depth selection is carried out by the function
FindSegmentLength. The FindSegmentLength func-
tion also returns the magnitude of the maximal ocean
current and assigns it to SegmentLength. Based on
direction of the selected ocean current (vcx, vcy) at the
chosen depth (NodeDepth) a new node znew is added
to the tree. Cost of the new node will be equal to sum-
mation of the cost of znearest and the magnitude of
the selected ocean current (SegmentLength). Due to
dynamics of the minimally-actuated underwater vehi-
cles, their movement is bounded by the magnitude of
propulsion of ocean currents. Consequently, instead
of expanding the nearest node directly to the random
node, the new node is just a SegmentLength away
from the nearest node. After connecting the new node
to the tree, a backtracking pointer of the new node

points to znearest and the last field of the new node is
assigned the ROMS index of the selected ocean depth
(NodeDepth).

When there is a node, named next–to–end, that
is connectible to the end (goal) node, the algorithm
will activate FindMinimumPath which returns a path
originating from the start node to the goal node.

5.1 Comparison with prior work

The combination of Algorithms 1 and 2 differs from
Rao’s work [27] in three important areas; Firstly, the
algorithm is used to guide the minimally-actuated ve-
hicles whose control input is only depth-switching sig-
nals, whereas the algorithm by Rao is applied for glid-
ers. Secondly, the assumption that distances between
degrees of latitude and longitude are fixed is relaxed.
Thirdly, it is assumed a larger column of water for the
vehicle to utilize.

Furthermore, the time-invariant RRT developed
here differs from conventional RRT in the functions
ExtendTree, FindSegmentLength, and FindMinPath
that exploits OMP data in the development of the
tree. More importantly, the algorithm returns a 3D
RRT tree, accommodating both horizontal and verti-
cal motions of the underwater vehicle. A visual repre-
sentation is shown in Figure 3. The extra dimension
in the tree represents the depth switchings for the ve-
hicle.

It is worth expanding several aspects of the Ex-
tendTree algorithm. Firstly, when extending the near-
est tree leaf towards the random node, it chooses a
dive depth in ROMS with the largest current among
the ocean currents at the nearest tree leaf location.
Secondly, the tree will expand at each epoch irrespec-
tive of direction. That is, when the algorithm is un-
able to select a depth with a current vector pointing
in the Line of Sight (LoS) direction, it will still aug-
ment to the tree a node in the opposite of LoS under
the propulsion of minimum current at the tree leaf as
shown in Figure 4. This characteristic differs the algo-
rithm from conventional RRT that operates without
effects from disturbances. Furthermore, it should be
noted that each node contains a cost which is the ac-
cumulation of magnitude of ocean current velocities.
Finally, contrary to the conventional RRT, the path
planning algorithm proposed here guarantees conver-
gence. Details of the convergence proof are presented
in Section 6.1.

Figure 3: Illustration of 3D structure of the tree.

Unlike the A∗ approach in [27], this approach does
not grid the whole search space, but interpolates
ROMS inside the horizontal space for the ocean cur-
rents at each node. The continuity of the space is
preserved by taking this approach. Interpolating for
the ocean current velocities also guarantees that our
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Figure 4: Expansion of the tree in the opposite LoS.

path planning algorithm aligns with real operation of
underwater vehicles whose motion is not discrete but
continuous.

Algorithm 2: A tree extension algorithm for the
time-invariant RRT
Input: The RRT tree G = (V,E), the desired

end node zend, the world space (world),
and the ball Bη̄f ,rf .

Output: An extended tree G′ = (V ′, E′), a flag
(flag) signalling connectability between
the extended tree with the end node

1 V ′ ← V ;E′ ← E
2 LoopFlag ← 0
3 while LoopF lag == 0 do
4 zrand ← RandomPointSeeding(world)
5 znearest ← Nearest(G, zrand)
6 [SegmentLength,NodeDepth,vcx,vcy] ←

FindSegmentLenth (znearest, zrand)
7 cost←

InferNodeCost(znearest, SegmentLength)
8 znew ←

Steer(znearest, vcx, vcy, cost,NodeDepth)
9 V ′ ← V ′ ∪ znew;E′ ←

E′ ∪ {(znearest, znew)};G′ ← (V ′, E′)
10 LoopF lag ← 1

11 if ‖znew − zend‖ ≤ rf then
12 flag ← 1
13 G′ ← MarkConvergence(G′)
14 else
15 flag ← 0
16 return G′, flag

6 Time-varying RRT Algorithm
In order to exploit the time-varying characteristics of
ocean currents for controlling the path of profiling
drifters, a sampling-based path planning algorithm is
proposed.

Algorithm 3 describes a novel time-varying RRT
utilising OMP. Creation of the world space is equiv-
alent to the time-invariant RRT. However, the Gen-
erateTimeNode function is now used to generate the
nodes for the time-dependent tree and consists of eight
fields; the six fields generated by GenerateNode in
Algorithm 1, and two additional fields containing a
branch index and time. This eight field vector is repre-
sented as x. The starting node (tree root) is assigned

Algorithm 3: The time-varying RRT algorithm
with incorporation of 4D OMP for AUV

Input: An initial waypoint η̄0 = {b10, b20}, a
target waypoint η̄f = {b1f , b2f},
predicted ROMS data, a world space (the
extracted region in ROMS)
Q = {NEcorner, SWcorner}, and the
termination ball Bη̄f ,rf .

Output: The switching sequence of depth
control inputs.

1 world ← CreateWorld(NEcorner,SWcorner)
2 xstart ← GenerateTimeNode(η̄0,0,0,1,1,1)
3 xend ←

GenerateTimeNode(η̄f ,0,0,1,branchend,tend)

4 V ← {xstart} ; E ← ∅ ; G← (V,E)
5 if ConnectionCheck(t← 1,xstart, xend, rf) then
6 path ← {xstart;xend}
7 else
8 forall the NumberOfTrees do
9 NumPaths← 0

10 while NumPaths < 1 do
11 [G, flag]←

ExtendTVTree(G,xend, world)
12 NumPaths← NumPaths+ flag

13 path ← FindMinimumPath (G,xstart,xend)
14 return Depths, path

t = 1 and a branch index of 1. However, only the
goal location can be set for the end node since the fi-
nal time and branch can only be determined following
successful expansion of the tree.

Algorithm 4: The tree expansion algorithm for
time-varying RRT.

Input: The RRT tree G = (V,E), the desired
end node xend, the world space (world),
and the ball Bη̄f ,rf .

Output: An extended tree G′ = (V ′, E′), a flag
(flag) signalling connectability between
the extended tree with the end node

1 while Tree is not extended do
2 zrand ← RandomPointSeeding(world)
3 [znearest, tnearest]← Nearest(G, zrand)

[SegmentLength,NodeDepth,vcx,vcy] ←
FindTVSegmentLenth (znearest, tnearest, zrand)

4 cost←
InferNodeCost(znearest, SegmentLength)

5 znew ←
Steer(znearest, vcx, vcy, cost,NodeDepth)

6 tnew = tnearest + 1
7 xnew ← {znew, tnew}
8 V ′ ← V ′ ∪ xnew;E′ ←

E′ ∪ {(xnearest,xnew)};G′ ← (V ′, E′)

9 if ‖xnew − xend‖ ≤ rf then
10 flag ← 1
11 G′ ← MarkConvergence(G′)
12 else
13 flag ← 0
14 return G′, flag
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Figure 5: Illustration of time-varying expansion of the
tree. Each node assigned with a time, and different
branches correspond to different colors.

For every evolution cycle of the RRT, Ex-
tendTVTree generates a random spatial point zrand.
The RRT then searches against all nodes and returns
the node (xnearest) that is spatially closest to that ran-
dom point. The xnearest has a node position znearest
at its epoch tnearest.

The function FindTVSegmentLength interpolates
the ROMS data at the location znearest along both
time and depth dimensions and returns the maximum
ocean current originating from znearest pointing to-
wards zrand. The actual vehicle motion between the
epoch tnearest to tnearest + 1 is then the determined
by the kinodynamics of the profiling float with the se-
lected ocean current. Should the LoS-directed ocean
current not exist, the minimal ocean current against
the LoS will be used. The RRT adds a new node xnew

to the tree at epoch (tnearest + 1) with position znew.

Using this approach, many branches can be built
with varying time indices. This approach is illustrated
in Figure 5. Initially, at time 1, corresponding to the
origin, the first random node creates a new branch and
initiates a node xnewA1[2]. Here, xnewAn[t] represents

an nth node of branch A at time t and at location
znewAn.

On subsequent evolution cycles, if the random point
is closest to the origin the algorithm will create a
new branch, e.g., xnewB1[2], next to xstart[1]. Con-
sequently, the branches evolve independently, one in
the direction of xnewA1[2] and the other one in the
direction of xnewB1[2]. Then xnewA1[2] and xnewB1[2]

will represent the predicted positions of the vehicle at
time epoch 2. A visual illustration of time-varying ex-
pansion of the tree is depicted in Figure 5 where the
different branches are represented by colors.

Note that this approach is subtly different to the
construction of multiple RRTs. The branches emanat-
ing from the root node grow until one branch reaches
the termination condition at the goal location. To
synthesize additional trees, NumberofTrees in Al-
gorithm 3 is set to a value different from unity. The

FindMinimumPath function will extract the path with
a minimum cost from amongst these branches.

6.1 Analysis

The prove of convergence of the RRT algorithm for
the profiler with incorporation of OMP is given below.
This proof is inspired by the works of Jouffroy et al.
[10] and Smith and Huynh [11].

Convergence of the time-varying algorithms
Lemma 1. Given the controllability check showing
that desired waypoints are in fully-controllable free
space χfree, we can surely obtain planned paths to the
goal region around ηf .

Proof. In the deep-sea environments, there are several
layers of currents. According to Jouffroy et al. [10],
when there are more than or equal to three ocean cur-
rents whose directions spanning the horizontal space,
we can guide the vehicle to the destination - actually
around the destination.

Specifically, we often calculate

θ = [θ1, θ2, θ3]>, (3)

where θi,∀i = 1, 2, 3, are the difference angle between
the currents velocities (vc1, vc2, vc3)> at each layer and
the line of sight.

Consequently, if (vc1, vc2, vc3)> spans the space, we
can express any point in the horizontal space as a lin-
ear combination

∑3
i=1 αivci. Therefore, by applying

control u = argmin (θ), the profiler can always be di-
rected towards the region around the end node.

Probabilistic completeness
Lemma 2. The time-varying RRT are probabilistic
complete, i.e., the expected number of iteration re-
quired to connect xstart to χend is limited.

The proof for probabilistic completeness is based on
the work of Karaman and Frazzoli [25]. This lemma
extends to the case of disturbing environments. We
do this based on the controllability check of the region
of interest. This controllability check assures that ver-
tices of the RRT tree are attraction sequences of the
free space χfree, and are attracted to the potential
well around the goal. If the vehicle lies in the par-
tial controllability areas, the attraction of sequences
in χfree into Bη̄f ,rf cannot be guaranteed.

7 Results

The algorithms presented in the previous sections are
evaluated using OMP from the Southern Californian
Bight. Figure 6(a) shows the regions where paths are
to be planned for the profiling floats. Figure 6(b)
shows the controllability map using OMP data for the
regions in Figure 6(a). The controllability map is gen-
erated using the process depicted in Section 4.1 and
detailed [11].

In this work, the proposed algorithms are verified
in two types of regions; (1) near fully-controllable,
and (2) partially-controllable regions. In Figure 6(b),
the red box indicates a controllable region, whilst the
white box shows a less (or partial) controllable region.
Landmass is represented in dark blue and corresponds
to completely uncontrollable areas.
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Table 1: Summary of 100 Monte Carlo simulations results for both Time-Varying (TV) and Time-Invariant
(TI) algorithms with full (FullCtr) and partial (PartialCtr) controllability regions.

Convergence (%) Avr Switchings Avr Path Length (km) Real Convergence (%) Avr Difference (km)

FullCtr TI 97 44 21.983 4 8.593
FullCtr TV 100 40 22.489 100 0.405
PartialCtr TI 58 94 25.668 3 17.337
PartialCtr TV 61 48 22.012 100 0.368

(a) Google Earth image of the geographic region
of interest (Southern Californian Bight) illustrat-
ing full (red) and partial (white) controllability
regions.

(b) The controllability heat map generated from ocean
model predictions. Blue refers to areas of low controlla-
bility, and red are areas of high controllability.

Figure 6: (a) The geographic area of interest high-
lighted by grid rectangles. (b) The controllability heat
map computed for this geographic region. Note that
the two images are not the same scale.

The planning regions (gridded rectangles) are cho-
sen to have edge lengths of greater than 20 km so as
to present the algorithms with opportunities to plan
long-distance missions than can span several days to
weeks.

Figure 9 presents a RRT tree generated from the
time-varying algorithm. This tree shows the evolution
of the profiling float locations at different points of
time. Particularly, in this figure, red and blue subtrees
represents the time-dependent evolution of the tree
from the root node. Since the tree evolution accounts
for longitude, latitude, depth, and time, this tree is
actually of 4 dimensions.

Figure 7 shows examples of paths returned from
multiple executions of the Time-Varying algorithms
with the same start and end goal locations. The green
line is a connecting line between the starting waypoint
and the destination goal. Distance between waypoints
in Figure 7 is more than 22 km. Lines in red, blue,
and brown are planned trajectories returned from the
different executions of the algorithms. Due to ran-

domness of the RRT different paths are obtained af-
ter each run, however, all paths converge to the area
around the goal destination.

Figure 8 illustrates the expected trajectory and
depth profile when executing one of the planned paths
of Figure 7. As can be seen, the profiling float changes
depths along the path (orange points) to select cur-
rents that steers the vehicle towards the goal.

Figure 7: Three planned paths for the profiler when
using the time-varying algorithm with the same start
and goal locations.

Figure 8: 3D representation of a planned path when
using time-varying algorithm. Orange lines show se-
lected depths along the path.

7.1 Monte-Carlo simulations of the path
planner

Monte-Carlo simulations of the algorithms in both
the fully-controllable and partially-controllable re-
gions shown in Figure 6(a) were performed. For
each region, 100 pairs of starting and goal waypoints
are randomly generated for Monte-Carlo simulation
with the following conditions: 1) fully-controllable
time-invariant RRT, 2) fully-controllable time-varying
RRT, 3) partially-controllable time-invariant RRT,
and 4) partially-controllable time-varying RRT.

Table 1 summarises the results of the simulations
for each case. Efficiency of the algorithms are as-
sessed via five quality factors including: 1) percentage
of convergence amongst 100 runs of the algorithms, 2)
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Figure 9: 3D Tree when using time-varying algorithm.
Dark blues and red shows the tree structure in hori-
zontal plane, and dotted lines with green ends repre-
sents depth switchings at each node.

an average number of depth switchings, 3) an average
length of planned path, 4) percentage of real conver-
gence, and 5) average difference (distance) between
the destination goal and the planned final position.
The column of real convergence shows the number of
planned paths amongst 100 runs that actually termi-
nate inside the ball Bη̄f ,rf when implemented in the
ocean model. Here an rf = 0.55 km is chosen. This
assessment criterion is necessary particularly for the
time-invariant cases where the planned paths divert
away from the destination goals once they are applied
with time-varying data. Finally, the average distance
criterion is the distance between the desired goal po-
sition and the actual end location of the profiler.

Table 1 shows the average number of depth switch-
ings is greater than or equal to 40, which is equivalent
to an actual deployment time of 40 hours. The av-
erage travel distance and time suggest the algorithms
are suitable to motion planning for persistent naviga-
tion by profiling floats. The average number of depth
switchings of the full controllability cases are less than
those of the partial controllability ones. This phe-
nomenon can be explained by the fact that the profil-
ers operating in the partial-controllable region do not
have a variety of choices of control actions, and thus
tend to take longer paths which are sometimes away
from the goal.

If the controllability check indicates the region is
only partially controllable, both time-invariant and
time-varying algorithms return less than 100% con-
vergence. This is due to the fact that ocean currents
in the region are biased towards some directions. As
discussed in Section 6.1, vectors of the ocean cur-
rents in a region that do not span the space leads
to uncontrollable states of the system. Additionally,
the time-varying RRT is capable of searching more
convergence paths than those of time-invariant even
though both of the path planners operate in partially-
controllable areas. In fact, the condition of time-
independent currents in the time-invariant RRT re-
stricts the number of variations of ocean currents’ di-
rections. Consequently, it is less likely that the time-
invariant RRT can find a converged path as compared
to the time-varying RRT. Nevertheless, whenever the
time-varying path planner returned a path, it can

guarantee that the path’s real end position falls within
the terminating ball Bη̄f ,rf .

A notable number emerging from the summary is
that the profiler can be planned to converge to the
goal almost surely (100%) when the time-varying RRT
is applied inside the fully-controllable region. Even
though the time-invariant algorithm shows 97 out of
100 simulations converge, only 4% of the planned
paths terminating within Bη̄f ,rf when executed in the
ocean model. This fact is construed by observing that
the average distance between the real end locations
and the goal destinations for the fully-controllable
time-invariant algorithm is slightly more than 8.5 km
and much greater than rf .

In summary, the time-varying RRT with prior con-
trollability check formulates a combined algorithm
that can guarantee convergence of the profiling floats.
Also, the time-varying RRT found to be superior than
the time-invariant one when they are applied to plan
paths in 4D space.

8 Conclusion

This paper has presented a set of time-invariant and
time-varying RRT algorithms that plan paths for un-
derwater profiling floats based on predictions from an
OMP that guarantee arrival to the goal. The algo-
rithms are capable of incorporating time-varying dy-
namics of the ocean while still maintaining conver-
gence properties along the path. A Monte-Carlo sim-
ulation demonstrates the effectiveness of the method,
and shows in dynamic ocean current regions exhibiting
near-full controllability that 100% of the time-varying
RRT algorithm generated paths converged. This is
compared to approximately 4% that converged when
considering time-invariant conditions.

Acknowledgments

V. Huynh was supported by QUTPRA scholarship
from the Queensland University of Technology. R.N.
Smith was supported through a Fort Lewis College
Deans award for innovative research.

References

[1] O. Schofield, J. Kohut, D. Aragon, E.L. Creed,
J.G. Graver, C. Haldman, J. Kerfoot, H. Roarty,
C. Jones, D.C. Webb, and S. Glenn. Slocum glid-
ers: Robust and ready. Journal of Field Robotics,
24(6):473–485, 2007.

[2] G. Griffiths, C. Jones, J. Ferguson, and N. Bose.
Undersea gliders. Journal of Ocean Technology,
2(2):64–75, 2007.

[3] D. Roemmich, S. Riser, R. Davis, and Y. De-
saubies. Autonomous profiling floats: Workhorse
for broad-scale ocean observations. Marine Tech-
nology Society Journal, 38:21–29, 2004.

[4] J. G. Graver. Underwater Gliders: Dynamics,
Control and Design. PhD thesis, Princeton Uni-
versity, 2005.

[5] D.A. Paley, F. Zhang, and N.E. Leonard. Co-
operative control for ocean sampling: The glider
coordinated control system. IEEE Transactions



Proceedings of Australasian Conference on Robotics and Automation, 2-4 Dec 2014, The University of Melbourne, Melbourne, Australia

on Control Systems Technology, 16(4):735–744,
July 2008.

[6] N. E. Leonard, D. A. Paley, R. E. Davis, D. M.
Fratantoni, F. Lekien, and F. Zhang. Coordi-
nated control of an underwater glider fleet in an
adaptive ocean sampling field experiment in mon-
terey bay. Journal of Field Robotics, 27(6):718–
740, 2010.

[7] R. N. Smith, Y. Chao, P. P. Li, D. A. Caron,
B. H. Jones, and G. S. Sukhatme. Planning and
implementing trajectories for autonomous under-
water vehicles to track evolving ocean processes
based on predictions from a regional ocean model.
International Journal of Robotics Research, 29
(12):1475–1497, October 2010.

[8] R. N. Smith, M. Schwager, S. L. Smith, B. H.
Jones, D. Rus, and G. S. Sukhatme. Persis-
tent ocean monitoring with underwater gliders:
Adapting sampling resolution. Journal of Field
Robotics, 28(5):714 – 741, Sept/Oct 2011.

[9] R. N. Smith and M. Dunbabin. Controlled drift:
An investigation into the controllability of un-
derwater vehicles with minimal actuation. In
Proceedings of the Australasian Conference on
Robotics and Automation, July 2011.

[10] J. Jouffroy, Q. Zhou, and O. Zielinski. On active
current selection for lagrangian profilers. Model-
ing, Identification and Control, 2013.

[11] R. N. Smith and V. T. Huynh. Controlling
buoyancy-driven profiling floats for applications
in ocean observation. IEEE Journal of Oceanic
Engineering, 2014.

[12] C. Roman, G. Inglis, and B. McGilvray. La-
grangian floats as sea floor imaging platforms.
Continental Shelf Research, 31(15):1592 – 1598,
2011.

[13] D. Hsu, R. Kindel, J. C. Latombe, and S. Rock.
Randomized kinodynamic motion planning with
moving obstacles. The International Journal of
Robotics Research, 21(3):233–255, 2002.

[14] W. Zhang, T. Inanc, S. Ober-Blobaum, and J.E.
Marsden. Optimal trajectory generation for a
glider in time-varying 2D ocean flows b-spline
model. In Proceedings of the IEEE International
Conference on Robotics and Automation, pages
1083–1088, May 2008.

[15] N.K. Yilmaz, C. Evangelinos, P. Lermusiaux, and
N.M. Patrikalakis. Path planning of autonomous
underwater vehicles for adaptive sampling using
mixed integer linear programming. Oceanic En-
gineering, IEEE Journal of, 33(4):522 –537, oct.
2008. ISSN 0364-9059.

[16] K.P. Carroll, S.R. McClaran, E.L. Nelson, D.M.
Barnett, D.K. Friesen, and G.N. William. AUV
path planning: an A* approach to path planning
with consideration of variable vehicle speeds and
multiple, overlapping, time-dependent exclusion
zones. In Proceedings of the Symposium on Au-
tonomous Underwater Vehicle Technology, pages
79–84, Jun 1992.

[17] A. Alvarez and A. Caiti. Interaction of au-
tonomous underwater vehicles with variable scale
ocean currents. In Proceedings of the IFAC World
Conference Systems, 2002.

[18] A. Alvarez, A. Caiti, and R. Onken. Evolutionary
path planning for autonomous underwater vehi-
cles in a variable ocean. IEEE Journal of Oceanic
Engineering, 29(2):418–429, 2004.

[19] B. Garau, A. Alvarez, and G. Oliver. Path plan-
ning of autonomous underwater vehicles in cur-
rent fields with complex spatial variability: an A*
approach. In Proceedings of the IEEE Interna-
tional Conference on Robotics and Automation,
pages 194 – 198, april 2005.

[20] B. Garau, M. Bonet, A. Alvarez, S. Ruiz, and
A. Pascual. Path planning for austonomous
underwater vehicles in realisitic oceanic cur-
rent fields: Application to glider in the western
mediterranean sea. Maritime Research, 6:5–22,
2009.

[21] D. Kruger, R. Stolkin, A. Blum, and J. Briganti.
Optimal AUV path planning for extended mis-
sions in complex, fast-flowing estuarine environ-
ments. In Proc. IEEE International Conference
on Robotics and Automation, Rome, Italy, 2007.

[22] J. Witt and M. Dunbabin. Go with the flow:
Optimal path planning in coastal environments.
In J. Kim and R. Mahony, editors, Proceedings
of the 2008 Australasian Conference on Robotics
and Automation, Canberra, ACT, 2008.

[23] L.E. Kavraki, P. Svestka, J.-C. Latombe, and
M.H. Overmars. Probabilistic roadmaps for
path planning in high-dimensional configuration
spaces. IEEE Transactions on Robotics and Au-
tomation, 12(4):566–580, Aug 1996.

[24] S. M. LaValle and J. J. Kuffner. Randomized kin-
odynamic planning. The International Journal of
Robotics Research, 20(5):378–400, 2001.

[25] S. Karaman and E. Frazzoli. Sampling-based al-
gorithms for optimal motion planning. The In-
ternational Journal of Robotics Research, 30(7):
846–894, 2011.

[26] A. Bry and N. Roy. Rapidly-exploring random
belief trees for motion planning under uncer-
tainty. In Proceedings of the IEEE International
Conference on Robotics and Automation, pages
723–730, May 2011.

[27] D. Rao and S. B. Williams. Large-scale path
planning for underwater gliders in ocean currents.
In Proceedings of the Australian Conference on
Robotics and Automation, 2009.

[28] A.F. Shchepetkin and J.C. McWilliams. Quasi-
monotone advection schemes based on explicit lo-
cally adaptive dissipation. Monthly Weather Re-
view, 126:1541–1580, 1998.

[29] A. F. Shchepetkin and J. C. McWilliams. The
regional oceanic modeling system (ROMS): a
split-explicit, free-surface, topography-following-
coordinate oceanic model. Ocean Modelling, 9:
347–404, 2005.


