






for illumination invariance. For this application, HOG
with 7×7 cells was used, with a block consisting of 3×3
cells. This means that the smallest patch used (7 × 7
) consisted of a single cell, whereas the largest patch
(95 × 95 ) consisted of a grid of 13 × 13 cells. As the
descriptor was produced by concatenating the cell his-
tograms, the length of the descriptor increased with the
square of the patch edge size.

3.3 Classification

The key focus of this paper is on a comparison of fea-
tures, and the system level solution of the kelp detection
problem. A single classifier was used - a Support Vec-
tor Machine (SVM) with Radial Basis Function (RBF)
kernel. While further optimisation may be possible us-
ing alternative classification algorithms, RBF-SVMs are
known to provide good results on a wide range of prob-
lems [15]. In brief, an SVM finds the globally unique lin-
ear separating hyperplane that separates the two classes
with the maximal margin. As an extension, the RBF
kernel first transforms the input vector to infinite di-
mensional Hilbert space, so that non-linear separations
can be obtained. Only two parameters need to be tuned.
C is the cost parameter (large C is less tolerant of non-
separable data sets, and forces a model that is more ac-
curate on the training set). γ adjusts the radius of the
kernel (large γ decreases the kernel radius, which reduces
the distance over which support vectors have influence,
also creating a more complex decision boundary).

In this study, parameter selection was performed by
observing cross-validation results of a grid search over
C and γ. Following the guidance of [15], the parameter
ranges used were C = [2�5 , 215], and γ = [2�15 , 23], with
a logarithmic density of powers of 2.

4 Data Set

An additional objective of this paper is to establish a
benchmark for species detection in a large, high quality
AUV data set. Future research can then assess the ben-
efit of using AUV sensors and positioning, compared to
image processing alone.

The primary use of the labelled data set used in this
study is to estimate percentage cover and distribution of
various species and features in an area. For kelp, this is
done by taking all the labelled images from the area of
interest, and calculating the percentage of labelled points
that are labelled as ECK.

4.1 Classes and Labelling

The entire data set is comprised of 14 dive missions con-
ducted by the AUV Sirius off the South-East coast of
Tasmania in October 2008 [32]. To capture images, Sir-
ius uses a calibrated stereo pair of 1.4 megapixel cameras,
and uses strobes to illuminate each capture. From the

data set containing over 100,000 stereo pairs of images,
marine scientists selected every 100th colour image, and
used the CPCe software package [18] to label 50 random
points on each (as shown in Figure 1). Images were taken
at

A wide range of class labels were used, indicating
biological species (including types of sponge, coral, al-
gae and others), abiotic elements (types of sand, gravel,
rock, shells etc.), and types of unknown data (ambigu-
ous species, poor image quality, etc.). Precise details
of the labelling methodology can be found in [1]. The
KELP (ecklonia radiata) class was used as-is, and all
other points were relabelled as OTHER. These labels
were then used as training and testing instances, with
features derived from localised image patches. Many of
the classes can be arranged in a hierarchy, as shown
in Figure 2. Of particular relevance are the groups
“Brown Macroalgae” (containing kelp and other brown
aquatic plants), and “Macroalgae” (containing brown,
red and other macroalgae). Figure 3 shows some ex-
amples, where the yellow crosses indicate the labelled
points, with the surrounding patch on which the descrip-
tors were computed.

Figure 2: Class hierarchy summary

Figure 3: Example 95 × 95 patches of kelp (left) and all
classes (right)

4.2 Training, Validation and Test Sets

As shown in Figure 4, data was divided into training,
validation and test sets. This is described in more detail
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below.

Test Set

A random 20 percent of the images were reserved for
use in evaluating the final model. Data from these im-
ages was not used in any stage of the model selection or
parameter optimisation.

Training and Validation Sets

The images not reserved in the test set were used for
training and validation. 67% of the randomly labelled
image points were used as the Training Set, and the re-
maining 33% as the Validation Set. A fixed validation set
was used for model comparison, instead of cross valida-
tion. This greatly reduced the computational require-
ment (by approximately an order of magnitude com-
pared to 10-fold cross validation). Training set sensitiv-
ity results on the final model (Figure 7) demonstrated
that peak performance could be obtained with signifi-
cantly smaller training sets, rendering cross-validation
unnecessary.

Figure 4: Breakdown of data set into Training Set (yel-
low +’s), Validation Set (white +’s) and Test Set (red
box)

Training and Testing Strategy

For the Model Comparison stage, 3-fold cross validation
was performed within the Training Set to optimise the
SVM parameters C and γ. Models were then retrained
on the full training set, and performance results reported
on the Validation Set. Once the best model had been
selected, detailed analysis was performed on the Test
Set results.

4.3 Dive Characteristics

Figure 5 shows the most prominently featured classes in
each dive. It is worthwhile noting: Overall, only around
5% of the points are KELP; the largest component of
OTHER is sand; 6 of the dives included no KELP at all.

While dives in the campaign were conducted in a similar
geographic area (the South-East coast of Tasmania), and
at a similar time (over several weeks) they vary greatly
in depth and content. It is important to train and test
across multiple dives, as the detection system needs to
be robust enough to manage anything from a deep dive
over sand, to a shallow dive with rock and kelp.
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Figure 5: Percentage distribution of most commonly oc-
curring class labels in each dive mission. The mission
names consist of a number (indicating the chronologi-
cal order), and keywords describing the local area. Key
classes are SAND (sand), ECK (kelp) and MATR (bio-
logical matrix, typically a range of biological organisms
in one area).

5 Model Comparison Experiments

A series of experiments was run to test the performance
of classifiers trained using the various local image de-
scriptors and scales described in Section 3.
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Raw PCA GLCM HOG LBP
7× 7 0.63 0.63 0.41 0.17 0.38

15× 15 0.60 0.61 0.48 0.30 0.54
31× 31 - 0.57 0.51 0.44 0.61
63× 63 - 0.54 0.57 - 0.62
95× 95 - 0.57 0.63 - 0.65

Table 1: f1-scores for greyscale descriptors

5.1 Patch, Feature and Classifier
Combinations

Greyscale Comparison

A classifier was trained to predict KELP vs OTHER,
using the descriptors extracted from greyscale patches
at each scale. This allows both a comparison of the de-
scriptors, and an assessment of which scales are most
useful.

Colour Comparison

Some descriptors (Raw, PCA, GLCM) can be extended
to work in the RGB colour space. This comparison is less
complete (as it includes fewer descriptors), but it allows
an assessment of how useful the colour information in
the AUV images is used for species detection. Note that
for colour GLCM, only the green and blue channels were
included, to maintain consistency with [8].

5.2 Performance Evaluation

One key attribute of the data set is that it is signif-
icantly skewed against KELP. The OTHER class con-
tains approximately 20 times the number of instances.
During classification, the instances were weighted [16] in
the RBF-SVM, so as not to bias the solution against the
minority class.

Class weighting reduces the inherent classifier bias,
but it is still important to choose an appropriate per-
formance metric for the classifiers, that is insensitive to
class imbalance. The f1-score is commonly used for bi-
ased classes, and is used as the primary performance
metric in this paper. It is defined as the geometric mean
of precision and recall on the minority class. Precision
(the percentage of instances classified as kelp that are
actually kelp) and recall (the percentage of genuine kelp
that is classified as kelp) must both be high in order to
obtain a good f1-score.

5.3 Results

Table 1 and Table 2 are the final results on the Valida-
tion Set, after training the RBF-SVM classifier on each
descriptor and scale. Note that where a ‘-’ is listed, the
model was unable to be run, usually due to dimensional-
ity of the feature vector, or memory limitations. Figure
6 shows both greyscale and colour descriptors across all
scales.
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Figure 6: f1-scores for colour and greyscale descriptors.
The dashed line highlights the performance of the peak
performing model)

Raw PCA GLCM
7× 7 0.71 0.69 0.48

15× 15 - 0.73 0.60
31× 31 - 0.68 0.65
63× 63 - 0.66 0.67
95× 95 - - 0.69

Table 2: f1-scores for colour descriptors

5.4 Discussion

Greycale Comparison

Both Raw pixels and PCA performed best at the small-
est scale (7 × 7). The similarity indicates that at the
smaller scales, very little useful information is discarded
by PCA. As the scale was increased, training the SVM
on raw pixels became computationally intractable, and
PCA showed a slight decrease in performance. This de-
crease in performance at larger patch sizes for PCA sug-
gests that the descriptor takes its information from the
immediate local area, and larger patch sizes are simply
adding noise, weakening performance.

HOG, GLCM and LBP all performed relatively poorly
at smaller scales, with steadily increasing performance
towards the larger patch size. As these descriptors were
explicitly constructed to capture textural information,
this strongly suggests that the textures that are best
suited to kelp detection are on the scale of the larger
patch sizes.

It is worth noting that the PCA model operating on
very localised patterns performs similarly to LBP and
GLCM at the largest patches (the LBP having a slightly
higher performance). Given the difference in scale used,
it is possible that a combination of the 7 × 7 PCA and
95×95 (or larger) LBP would have superior performance.
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This suggests that the combination of image descriptors
at multiple scales could be an interesting area for further
work. In addition, although LBP gave the best greyscale
performance, no colour extension was tested. A colour
extension of LBP could provide superior results to the
PCA and GLCM descriptors that were tested, and would
be a worthwhile area of future work.

Colour Comparison

Colour correction in underwater imagery is a notoriously
difficult problem. Water absorbs the red much more
strongly than other parts of the spectrum, so there is
strong dependence on depth of both illumination and
colour. The strobes on the AUV are limited in range,
and objects below the AUV can vary from well illumi-
nated, to strongly over or under exposed.

Despite this, all of the colour descriptors exhibited a
clear performance increase over their greyscale counter-
parts, at all scales. This indicates that even with the ba-
sic colour correction used in this data set [17], including
colour information in the descriptors is beneficial for kelp
detection. A method for more advanced colour correc-
tion has been proposed [5], which may result in further
improvements to performance.

6 Final Model Evaluation

The primary aim of separating this study into “Model
Comparison Experiments” and “Final Model Evalua-
tion” was to enable an in-depth analysis of the quality
and error on the final classifier. This section includes
retraining the model on various subsets of the Training
Set, and then an analysis of its properties on the Test
Set.

The model chosen for evaluation was the PCA (RGB)
at the scale of 15 × 15 . This model was selected for
its combination of high performance, and low computa-
tional load (only requiring the linear combination of a
small image patch, where other descriptors have greater
computational complexity, and require computation over
much larger patches).

6.1 Training Set Sensitivity Tests

In this group of tests, we retrained the classifier on sub-
sets of the Training Set, to determine the impact on per-
formance. Determining an appropriate training set size
is of great interest for automating species detection. If
the training data is found to be insufficient, more data
could be manually labelled in order to improve perfor-
mance. However, if a classifier of similar performance
can be built with less training data, then this puts less
burden on the scientists to manually label large amounts
of data.

The size of the training set was varied in several ways:

Discarding a percentage of random patches. This tests
whether the training set was of sufficient size to per-
mit optimum performance on the model

A “single dive” approach. This trains on one dive at a
time, and demonstrates how optimistic a single-dive
model is when generalised to many dives

A “leave one out” approach. This trains on all but
one dive, simulati the performance on an additional,
unseen dive being performed in the same geographic
area.

6.2 Error Analysis Tests

The experiments in Section 6.1 were designed to test
whether the data sets were of sufficient size to provide
good generalisation performance. The question remains,
however, as to where the classifier makes mistakes. As
stated previously, the primary intended use of the kelp
detection system is to estimate percentage cover of kelp
in an area. Unevenly distributed error between dives, or
relative to other variables could result in coverage esti-
mate errors that are significantly above what the overall
model performance would suggest. Any variation in per-
formance for some subset of the data (such as a bias for
another type of macro-algae to be recognised as kelp)
needs to be understood by scientists making use of the
automated detection system, or their conclusions may
be biased by the error of the detection system. To pro-
vide insight into this problem, the error on the Test Set
was broken down by dive, and by groups of some of the
original expert labelled classes.

6.3 Results and Discussion

Overall Performance

Training Testing Precision Recall f1-score
Training Set Training Set 0.79 1.0 0.88
Training Set Validation Set 0.69 0.77 0.73
Training Set Testing Set 0.64 0.74 0.69

Table 3: Precision, Recall and f1-score on each testing
set, using PCA (RGB) on 15 × 15 patches

Results are shown in Table 3. The f1-score of KELP
decreases when assessed on the Training, Validation and
Testing Sets. The higher performance on the Training
Set could indicate slight over-fitting. The slightly lower
performance on the Testing Set compared to the Valida-
tion Set could be attributed to one of two effects.

Firstly, the Testing Set contained keypoints from com-
pletely unseen images, whereas the Validation Set is
made up of keypoints that occupy different areas of the
same images as the training set. This makes the Vali-
dation Set more optimistic; unusual illumination, colour
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balance or content of an image is likely to be represented
in both Training and Testing Sets.

Secondly, there is a known effect when a large number
of models are compared on a validation set. If the model
with the best performance is selected, the performance
quoted on that same set is biased to be slightly optimistic
[20].

Training Set Sensitivity
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Figure 7: Performance on random subsets of training
data
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Figure 8: Performance on single dive training sets

The Training Set percentage results in Figure 7
demonstrate that the model has no significant perfor-
mance improvement when trained on more than around
30% of the original Training Set. This supports the ear-
lier assumption that the training set was of sufficient size
that a separate Validation Set and Test Set could be re-
served (rather than using cross-validation). It also gives
an indication of how much hand-labelling is required to
make an optimum model (at least one based on local im-
age features). As discussed earlier, the onerous nature of
hand labelling makes this a valuable contribution. 30%
of the original Training Set corresponds to 10,086 hand
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Figure 9: Performance on discarding individual dives
from training set

labelled points (700 of which are kelp). This is far smaller
than the full data set of more than 60,000 hand labelled
points.

In Figure 8, the right hand columns show the per-
formance one gets looking solely at data from one dive
(both for training and testing). The left hand columns
show the performance of the exact same model on the
full Test Set (all dives). It is interesting to note a sig-
nificant drop for most dives when tested on the full Test
Set. The marked drop (of around 20% in kelp f1-score)
show that generalisation from a single dive is poor even
on dives done at a similar time, in a nearby geographic
location.

The results after training on all but one dives (Fig-
ure 9) are very similar to the performance when the full
training set is used.

The most interesting deduction comes from combin-
ing these results. Together, they suggest that although
training on a single dive has poor generalisation, it is
reasonable to expect good generalisation results in a ge-
ographic area with sufficient training data. This means
that once a species detection system has been trained on
a number of dive missions, it may not be necessary for
experts to perform any further hand labelling on subse-
quent dives in the area.

Error Analysis

Table 4 shows an analysis of performance on each dive,
on the model trained on the full Training Set. It is clear
that there is significant performance variation across the
dives (note, however, that the f1-score for KELP is mis-
leading on subsets where the true amount of KELP is
very small, and undefined with 0% kelp).

Table 5 shows a breakdown of where errors occurred
in the test set, on various subsets of the data. This ta-
ble reveals a highly skewed error distribution. Despite
comprising nearly half the set, only one sand point was
incorrectly labelled as kelp. In contrast, the error rates
on the macro algae (particularly the brown group, of
similar colour to kelp) were significantly higher. Col-
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Dive Total Accuracy f1-score % Kelp
14 92.92% 80.15% 18.96%
12 91.63% 73.79% 17.52%
15 86.18% 60.66% 12.48%
20 94.74% 71.67% 9.12%
6 97.70% 87.10% 9.06%
5 93.53% 57.92% 5.55%
19 97.45% 69.84% 5.38%
7 98.95% 40.00% 0.53%
16 99.68% - 0.26%
13 99.28% - 0.00%
11 99.54% - 0.00%
10 99.33% - 0.00%
9 100.00% - 0.00%
8 99.84% - 0.00%

Table 4: Performance on each dive, using PCA (RGB)
on 15 × 15 patches

Test Set subset N Accuracy Errors
Kelp 663 74.21% 171
Brown M.A. (ex-
cept kelp)

34 44.12% 19

All other M.A. 556 73.38% 148
Sand 5279 99.98% 1
All other classes 5780 98.15% 107
Total 12312 96.38% 446

Table 5: Performance on subsets of the data (‘M.A.’
refers to macro-algae), using PCA (RGB) on 15 × 15
patches

lectively, the combined macro algae groups contribute
61% of the false positives, despite the fact they consti-
tute only 5% of the OTHER instances in the test set.
While it is unsurprising that the model has most diffi-
cult with other types of macro algae, the magnitude of
the problem should provide a focus for further research.

7 Conclusion

In this paper, we have introduced a large data set of
expert labelled AUV images, computed benchmark re-
sults on a number of different techniques, and examined
the behaviour of an automated species detection system
in detail. Results on detection of kelp were promising,
and the work could be used to develop a practical sys-
tem to assist marine scientists. For the kelp detection
problem, future work that may improve performance in-
cludes: combining multiple scales; finding superior de-
scriptors; and making use of the additional non-image
information embedded in the AUV data.

For the evaluation of the model, we provided evidence
to suggest that a fixed species detection model with good
generalisation to at least a local geographic region was
feasible. The skewed error distribution in Table 5 high-
lights the importance of creating detailed performance
metrics for end-users, to avoid biasing their scientific

outcomes. Finally, the problem should be expanded be-
yond Ecklonia Radiata to allow discrimination between
multiple species and features.
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