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Abstract
This paper describes a texture recognition based
method for segmenting kelp from images collected
in highly dynamic shallow water environments by
an Autonomous Underwater Vehicle (AUV). A par-
ticular challenge is image quality that is affected
by uncontrolled lighting, reduced visibility, signifi-
cantly varying perspective due to platform egomo-
tion, and kelp sway from wave action. The kelp
segmentation approach uses the Mahalanobis dis-
tance as a way to classify Haralick texture features
from sub-regions within an image. The results il-
lustrate the applicability of the method to classify
kelp allowing construction of probability maps of
kelp masses across a sequence of images.

1 Introduction
Some marine researchers would like to understand the fac-
tors that affect kelp recruitment and dieback resulting from
different environmental patterns such as storms, cyclonesand
climate change. Collecting accurate data to classify kelp and
seagrass in these areas is difficult. Regions of interest include
on and around near shore reefs in 6-10 m water depth with
significant swell. These conditions can result in low visibil-
ity, turbulent water at the seafloor causing the kelp to sway,
and considerable natural lighting variation.

Various techniques have been proposed and demonstrated
to characterise kelp and seagrass habitats. These include
broader scale techniques such as satellite remote sens-
ing [Dekkeret al., 2005], airborne imagery[Lathropet al.,
2006], and Multi-beam sonar[Ierodiaconouet al., 2010]. Re-
cently, Roelfsema et al.[Roelfsemaet al., 2009] conducted a
seagrass coverage study in Moreton Bay using satellite re-
mote sensing, photo transects, and fine-scale survey. They
conclude that although the field surveys provided most ac-
curate local variability results, they are too costly for larger
areas meaning a reliance on broader scale methods to under-
stand region.

Autonomous Underwater Vehicles (AUVs) are emerging as
a tool for obtaining larger habitat distribution maps with very

fine detail capable of quantifying change with time. Although
most studies have focused on coral reef environments, recent
studies such as[Moline et al., 2007] have used multi-spectral
radiometers attached to an AUV to create distribution maps
for eelgrass with promising results.

In March 2009, a small AUV (shown in Figure 1[Dun-
babin and Allen, 2007]) was deployed around Marmion Reef,
near Perth, Western Australia to collect images of the kelp on
the seafloor. The images were of relatively low resolution
(640x480 pixels) captured by the downward facing naviga-
tion cameras. The test location is a highly dynamic environ-
ment resulting from swell and currents. This caused the AUV
to experience significant roll and pitch during the survey. Ad-
ditionally, the turbulence reduced visibility and wave action
caused highly variable natural lighting which additionally af-
fected image quality.

Figure 1: The Starbug AUV during image collection surveys
of kelp beds at Marmion Reef.

The work described here is focused on the robust detection
of kelp from these images whose quality is affected by factors
resulting from operation within these dynamic environments.
The objective is to obtain a kelp detection rate equivalent to
manual extraction with an ultimate goal of automatically lo-
calising, monitoring and quantifying the distribution of kelp
forest growth across the entire region.



1.1 Paper Outline

The remainder of this paper is structured as follows; Section 2
provides an overview of the Haralick texture features with
Section 3 describing clustering methods examined to classify
kelp from images. Section 4 details the methodology for gen-
erating kelp probability maps using Haralick texture features
from sliding window across the entire image. A qualitative
and quantitative assessment of the methodology using images
collected by the AUV are shown in Section 5, and finally Sec-
tion 6 concludes the paper.

2 Haralick Texture Features

This section describes the methods used to extract some ro-
bust features from RGB images allowing characterization of
texture from particular regions within the images.

2.1 Gray Level Co-occurrence Matrix (GLCM)

A co-occurrence matrix describes the patterns of neighbour-
ing pixels in an image at a given distance. It consists of com-
puting two-dimensional histogram matrices for different ori-
entations of pixels pairs across the image. By varying ori-
entation and the distance between two neighbour pixels, a
rotation-invariant and multi-scale method is obtained to ap-
proximate the joint probability distribution of a pair of pixels.

Mathematically, a co-occurrence matrix of a greyscale im-
ageI (z)= I (x,y) (coded on N grey levels) dealing with pixels
pairs inI (z) separated by a translation vectort = (∆x,∆y) is
defined as:

Mt(i, j) = #
{

(z,z+ t) ∈ ℜ2/I [z] = i, I [z+ t] = j
}

(1)

The co-occurrence matrixMt is a NxN matrix whose
(i, j)th element is the number of pixels separated by the trans-
lation vectort that have the pair of grey levels (i, j).

2.2 Multi-spectral GLCM

A multi-spectral variation to the GLCM computation to pro-
cess RGB images was introduced by Arvis et al.[Arvis et
al., 2004]. In this method, pixel pairs are found over each of
the 3 colour channels. A multi-spectral co-occurrence matrix
represents the total number of pixel pairs in the colour source
image having a colour valuei from the colour channelα, and
a colour valuej from the colour channelβ, separated by a
vectort. This was defined in the following way:

Mt(α,β)(i, j) = #
{

(z,z+ t) ∈ ℜ2/α[z] = i, β[z+ t] = j
}

(2)
By definition, one co-occurrence matrix is obtained per

pair of channels (e.g. RR, RG, RB, GG, GB and BB).

2.3 Haralick texture features
Using first order texture features such as standard deviation
and variance is not sufficient to properly characterize the tex-
ture of a small area in our original image. This observation
leads us to use other statistical moments.

Once the co-occurrence matrix has been computed, sta-
tistical properties can be extracted and then Haralick tex-
ture features[Haralicket al., 1973] computed. From the co-
occurrence matrixM (i, j) which contains the texture infor-
mation, Haralick defined 13 features which can be calculated
directly. Only five of these are commonly used because it was
shown that the 13 texture features are very correlated. The
five features used are uniformity, contrast, correlation, local
homogeneity and entropy defined by:
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such as|i − j| = k wherek = 0,1,2, ...,N−1.

2.4 Co-occurrence matrices and Haralick features
computation

By definition, co-occurrence matrices are symmetric so it is
sufficient to describe half of the space around one pixel to get
the whole neighbourhood. Consequently, to achieve a degree



of rotation invariance, the co-occurrence matrix is computed
matching the angles 0◦, 45◦, 90◦ and 135◦, and by symmetry
a total of 8 co-occurrence matrices are summed to obtain one
final rotation-invariant matrix.

As the data set consists of multi-scale images, it is nec-
essary to use several radii to build the co-occurrence ma-
trix (four were chosen in this case). As a result, 4 rotation-
invariant co-occurrence matrices are computed for each pair
of colour channels. As the red channel is highly absorbed un-
derwater and dependant on the altitude and depth at which the
image was taken, we ignore the contribution of this channel
to compute the multi-spectral co-occurrence matrix and only
consider the co-occurrence matrices within each of the green
and blue channels.

This method leads to the computation of 60 Haralick tex-
ture features per image (5 features x 4 rotation-invariant co-
occurrence matrices (different radii) x 3 pairs of colour chan-
nels).

Several methods can be applied to considerably reduce the
feature computation time using the properties of the rotation-
invariant co-occurrence matrices jointly with algorithmic
methods[Miyamoto and Merryman, 2005]. As the number
of grey levels used increases, the co-occurrence matrix cal-
culation becomes exponentially time consuming. Therefore,
feature computation is only calculated on 32 gray-level co-
occurrence matrices. Furthermore, using co-occurrence ma-
trix symmetry, it is easy to obtain the following equalities:
µx = µy andσx = σy.

A second approach which achieves a significant reduction
in Haralick feature computation time is via an efficient man-
ner in which the calculations are performed. That is by gath-
ering the features which loop across the data in similar ways
such as combining the calculation off 1, f 3, f 5 and f 9.

3 Feature Clustering

The classification parameters used are the Haralick texture
features (described in Section 2) extracted from a series of
representative kelp and non-kelp 100x100 pixel sub-images
obtained from the entire data set. It was important to use a
large training set with a mix of bright and dark samples taken
in poor, clear conditions with different degrees of red channel
absorption as shown in Figure 2.

All images taken by the AUV are georeferenced by the
variables roll, pitch, raw, altitude and depth. This infor-
mation can be used to bootstrap the clustering procedure
for the size and perspective of texture and red light atten-
uation. Therefore, to provide a “scaling” factor for texture
features, the previous 60 Haralick texture features are aug-
mented with altitude information from the AUV creating a
61-dimensional vector for each training image. Combin-
ing the 61-dimensional vectors from all training images, two
centroids (61-dimensional vectors) representing the kelpand
non-kelp classes can be created.

(a) Kelp texture samples.

(b) Non-kelp texture samples

Figure 2: Example clustering training set of kelp and non-
kelp 100x100 pixel sub-images extracted from the entire data
set.

An important consideration before processing any feature
clustering operation is that of normalization. Several nor-
malization methods exist although they are generally based
on properties extracted from the entire data set. Therefore,
as during the classification phase it is impractical to normal-
ize the sample against all the other samples, a methods not
requiring any normalization of the data is desired. The fol-
lowing sections describe two potential methods of clustering
depending on the application requirements.

3.1 Unsupervised Clustering

The k-means algorithm was considered for an unsupervised
clustering method of the available training samples. In order
to improve the results given by thek-means algorithm, Prin-
cipal Component Analysis (PCA) is first applied on the raw
training data vectors. Using PCA before building the refer-
ence kelp cluster reduces the possible number of errors during
the clustering phase.

However, the Euclidian distance cannot be used with non-
normalized texture features. Indeed, due to the large numeri-
cal values of certain features, the computed distance wouldbe
dominated by these. As a proper normalization of each new
feature vector is not possible (accordingly to the normaliza-
tion done during the training phase), the largest features are
divided by an appropriate factor in order to scale them within
the range [0:1].

Finally, the two centroids are determined that are used
to measure the distance between the current features vector
(matching with the texture of the current observed region of
the image) and each class.



3.2 Supervised Clustering
To achieve a supervised clustering, it is proposed to use the
Mahalanobis statistical distance measure. Contrary to theEu-
clidian distance, it takes into account the correlations ofthe
data set and is scale-invariant. However, it first requires the
data set to be clustered (kelp and non-kelp clusters) with this
distance used to estimate the closest cluster from the data
sample to be classified. Formally, the Mahalanobis distance
from a certain cluster for a texture features vectorX is defined
as:

DM (X) =

√

(X−µ)T S−1(X−µ) (3)

whereµ andS are respectively the mean vector and the co-
variance matrix of the cluster in question.

A supervised method is considered the most appropriate
approach in this case as the clusters do not require a lot of
samples to make the processing working well. In addition,
an unsupervised technique adds errors from the clusters con-
struction to the possible errors encountered during the latter
classification phase. The main advantage of using the Maha-
lanobis distance is that it does not require any normalization
or scaling of the data set, but this method completely relieson
the strength of the Haralick texture features from sub-images
to those of the training feature sets.

4 Kelp Probability Mapping
Using the clustering methods described in Section 3 it is de-
sired to build a probability map indicating the likelihood of
kelp occupying a particular region of an image. In order to
build such a map, it is proposed to use a sliding window over
the original image and for each sub-image classify it from the
texture features to determine if this neighbourhood has been
recognised as a kelp textural region.

To build the probability map, the sliding windows are over-
lapped and the mean value determined over each pixel of the
image. As a result, a likelihood of how close each region of
the image is from the kelp cluster can be determined. The
probability map is the result of averaging the binary output
from the texture classification for overlapping sub-images.
To improve accuracy, a sliding window of the same size as
the training samples was used. Also in order to ensure the
same number of overlaps per pixel (especially for the edges),
the original image was resized by mirroring out the edge pix-
els into a depth equal to the window size around the entire
boarder. Finally, the number of overlaps per sub-image was
chosen as a compromise between computation time and de-
sired accuracy.

A final normalisation step can be performed allowing the
use of the entire available grey-level range to build the proba-
bility map. This normalization will permit the removal of the
lowest probabilities (so only the centre of low probabilityar-
eas will be kept for better accuracy) while enhancing the kelp
masses. However, such a normalisation should be performed

after a thresholding process over the final image to reduce
enhancement of low probabilities due to false positives.

The final procedure developed for image-based kelp detec-
tion and probability map construction is shown in Figure 3.

Figure 3: Final method adopted for kelp detection and prob-
ability map construction.

5 Results

5.1 Unsupervised versus supervised clustering

A comparison between the unsupervised and supervised clus-
tering methods of Sections 3 and 4 using the training samples
from Figure 2 on a random image containing kelp is shown
in Figure 4 for a 100x100 pixel sliding window.

As shown in Figure 4 both clustering methods provide sim-
ilar results in terms of segmentation and probability maps.
Even if Euclidian distance method (unsupervised) returns
very few false positives, the supervised process seems to be
able to detect more kelp areas. Moreover, for more conve-
nience (no scaling or base shift required on the raw data), itis
preferred to use the Mahalanobis distance as the classification
method.

Despite the observed classification performance, it was
found that a considerable number of false positives can be en-
countered with both methods when processing images with
significant colour unbalances as shown in Figure 5. Conse-
quently, the sample images used as a training set has to be as
diversified as possible in order to counter the different ran-
dom lighting conditions, underwater visibility or red channel
absorption in these highly dynamic environments.

5.2 Sliding window size

The size of the sliding window impacts the computation time
required to collect texture features. However, the texture“as-
pect” of an object is not the same when it is seen from differ-
ing view heights. Figure 6 shows an example probability map
generated using the Mahalanobis distance with two different
sliding window sizes.

As seen in Figure 6, using a 100x100 pixels sliding win-
dow allows a quite good general definition of kelp texture but
it gives less accurate spatial detection of the kelp as the proba-
bility of a window mixing kelp and non-kelp texture becomes
higher with window size. However, with a small sliding win-
dow (50x50 pixels) it becomes more difficult to define a kelp
texture, i.e. the kelp texture becomes non regular with impor-
tant texture differences occurring between the base and the



(a) Original image.

(b) Probability map from unsupervised
clustering.

(c) Probability map from supervised
clustering.

Figure 4: Comparison of kelp probability maps from an
image generated by the Euclidean (unsupervised) and Ma-
halanobis (supervised) clustering methods using a 100x100
pixel sliding window.

leaves of the kelp. A larger sliding window tended to average
such differences.

Indeed, as shown in Figure 7 the higher textural region av-
eraging resulting from larger sliding windows appears to be
more robust to the detection of kelp masses in the darkest ar-
eas than from a smaller window.

On another hand, working with a smaller window allows
us to increase the number of overlaps over each pixel (as well
as improve the computational time) which consequently al-
lows better spatial definition of the kelp areas. As shown in
Figure 8 a smaller sliding window permits detection of very
small scattered kelp areas that have not been recognised by a
larger averaging window.

Figure 5: Examples of two significantly color unbalanced im-
ages which can result in large numbers of false positives.

5.3 Classification Results
An evaluation of the classification performance was con-
ducted using 45 images randomly selected from the entire im-
age set containing kelp, no kelp, high altitude, over exposed
images, and poor visibility. The total area of kelp in each
image was segmented out by a marine scientist and this was
compared against the proposed classification technique de-
scribed above. Figure 9 shows two example images of manu-
ally segmented kelp along with the classified kelp probability
map for the images.

Figure 10 shows the ROC curves for sliding window sizes
of 50x50 and 100x100 pixels using the Mahalanobis distance.
Each curve was obtained by comparing pixel by pixel the
manually segmented image and calculated probability map
for all 45 images and varying the probability threshold for
classification. The ROC curves show that the larger sliding
window has slightly better overall classification performance.
Additionally, the minimum Euclidean distance to the opti-
mum classification corresponds to a probability threshold of
0.55.

Figure 11 shows the percentage of classified kelp area
(both true and false positives) using a probability threshold
of 0.55 against the percentage of manually segmented kelp
for the 45 images. These results show generally good agree-
ment between the proposed technique and manual segmenta-
tion with the larger outliers due to very poor visibility and/or
high altitude images.

5.4 Kelp distribution mosaicing
One main difficulty encountered when building a mosaic
from underwater images containing large amounts of kelp is



(a) Original image.

(b) Probability map from 50x50 pixel
sliding window.

(c) Probability map from 100x100 pixel
sliding window.

Figure 6: Comparison of probability maps generation using
the Mahalanobis distance with varying sliding window size.

the swaying resulting from wave action. This complicates
the features matching between two overlapping images. By
building a probability map of the seagrass areas, an estimate
of the location of the kelp mass centres can be calculated giv-
ing more matching features in case of mosaicing processing.
Figure 12 shows a sequence of images from the AUV and the
resulting kelp probability maps before mosaicing.

Current work is developing methods to use these probabil-
ity maps from image sequences with kelp sway to reliably
quantify kelp abundance.

6 Conclusions

This paper has presented a qualitative and quantitative analy-
sis of a texture recognition based method for classifying kelp
from images collected in highly dynamic shallow water envi-
ronments with uncontrolled lighting and significant perspec-
tive and visibility variation. This approach uses the Maha-

(a) Original image.

(b) Probability map from 50x50 pixel
sliding window.

(c) Probability map from 100x100 pixel
sliding window.

Figure 7: Comparison of probability maps generation using
the Mahalanobis distance with varying sliding window size
on darker images.

lanobis distance as a way to classify Haralick texture features
of a sub-region of the original image. These features are de-
termined for multiple rotations and scales as well as color
channels to improve classification performance.

Kelp probability maps are generated by averaging the tex-
ture classifications of a sliding window sub-image across the
entire image. A compromise between kelp detection perfor-
mance, spatial definition and computation time can be ob-
tained by varying the sliding window size of the sub-image
used for classification.

Preliminary results from a data set collected in relatively
shallow water by an AUV have shown the method to reliably
segment kelp from a range of image sequences with signifi-
cant variability in lighting, visibility and seafloor characteris-
tics. Additionally, kelp probability maps have been success-
fully formed to allow approximation of the spatial density of
swaying kelp. Future work will consider an adaptive sliding



(a) Original image.

(b) Probability map from 50x50 pixel
sliding window.

(c) Probability map from 100x100 pixel
sliding window.

Figure 8: Comparison of probability maps generation using
the Mahalanobis distance showing kelp spatial definition with
varying sliding window size.

window size during the probability map construction phase to
account for significant variations in altitude across an image
typical of reef like environments.
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