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Abstract  

This paper proposes a real time hand gesture 
recognition system. The approach uses a range 
camera to capture the depth data. After some pre-
processing procedures, the depth data is used to 
segment the hand and then locate the hand in 3D 
space. The hand shape is classified into known 
categories using a chamfer matching method to 
measure the similarities between the candidate 
hand image and the hand templates in the database. 
The 3D hand trajectory is recognized by a Finite 
State Machine (FSM) method. Each gesture 
consists of several states. The 3D hand position 
determines the state transition of each gesture 
recognizer. Experiments show that the system 
performs reliably for recognizing both static hand 
shapes and spatial-temporal trajectories in real 
time. 

1 Introduction  
Fast and robust analysis of hand gestures has received 
increasingly more attention in the last two decades. Gesture 
recognition from a single view is important in the Human-
Robot Interaction (HRI) scenario. Both static hand shape 
and dynamic hand trajectories are expressive in our daily 
life. These kinds of hand gestures are naturally preferred in 
HRI applications. 
 Various methods have been proposed to segment 
and track human hands. Many systems [Imagawa et al., 
1998] [Hong et. al., 2000] have achieved promising 
performance; however, these methods only operate under 
strong restrictions of the environment, because they rely on 
simple clothing, static background, and constant lighting 
conditions.  
 We aim to achieve a real time hand gesture 
recognition system in a natural environment. It means we do 
not need homogenous clothing and should be able to 
perform reliably with cluttered and even non-static 
backgrounds. 
 We investigated the usefulness of a 3D range 
camera for our hand gesture recognition system. This 
hardware exhibits significant advantages over traditional 
cameras in the aspect of unambiguously capturing the depth 
data at a high frame rate, which makes the segmentation and 
tracking the hand in 3D space easy. Hand shapes are 
recognized by the Chamfer Matching method [Borgefors, 
1988], and 3D trajectories are recognized using a Finite 
State Machine (FSM) method. Gestures are recognized in 

real time. This gesture recognition method has wide 
applications including human robot interaction, intelligent 
rooms, virtual reality and game control.  
 The remainder of this paper is organized as 
follows: after a brief review of the related work in section 2, 
we investigate the property of the range camera in section 3. 
Hand segmentation and its 3D position are obtained in 
section 4, which is the input data for the hand shape and 
trajectory recognition algorithms in section 5. In section 6 
we present the experiments and the result. Finally, 
discussion, conclusion and future work are in section 7.  

2 Related work 
Hand detection and segmentation is an essential component 
for gesture recognition. Many approaches [Mo et. al., 2005] 
[Kjeldsen and Kender, 1996] use color information, since 
the skin color is a salient feature different from the 
background in most cases. However, these methods are not 
reliable under unstable illumination conditions, where, 
obviously, it is more challenging to extract complete hand 
shapes. Some methods use special colored gloves or a 
magnetic sensing device (data gloves) [Sturman and Zeltzer, 
1994] to simplify the task, but they hinder the naturalness of 
daily use. The intentions of the user should be recognized 
effortlessly and non-invasively.  
 Most of the hand trajectory recognition systems 
deal with 2D image data. [Starner and Pentland, 1995] 
tracked the hand by colored glove and natural skin tone for 
American Sign Language recognition. Some methods use 
stereo vision to achieve the hand tracking in 3D space. 
[Nickel et al., 2004] [Stieflhagen et al., 2004] used stereo 
cameras to locate the hand’s position in 3D in order to find 
the pointing direction. [Abe et al., 2000] proposed a 3D 
drawing system using a top-view camera and a side-view 
camera. Stereo vision is a popular choice for depth sensing. 
However, it is highly dependent on the textures of the object 
to find the correspondence between images, and becomes 
erroneous for texture-insufficient surfaces.  
 A time-of-flight range camera has become popular 
in the recent years. Although the technology is still in its 
early days, resulting in low resolution, noisy data etc, it has 
already been applied in a number of applications such as 
game controlling [Wang et al., 2008], upper body gesture 
recognition [Holte et al., 2008] [Grest et al., 2007], robot 
navigation [Prusak et al., 2007], and mobile human-robot 
teaming [Loper et al., 2009].  
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3 Range Camera 
A 3-D range camera is employed as our apparatus. It 
delivers the depth data of objects in its view at every pixel at 
a high frame rate. The distance of 3D points is determined 
by a Time-of-Flight (TOF) approach using modulated 
infrared light. The phase shift between the reference and 
reflected signal is determined by a sampling and correlating 
method for each pixel, and then the distance is calculated by 
the phase shift. See [Linder and Kolb, 2007] for more 
details about the operational principle of the range camera 
technology. Figure 1 shows the range camera we adopted, 
which is developed by PMD Technologies GmbH.  
 

        
 

Figure 1 PMD Range Camera  

 As illustrated in [Kahlmann and Ingensand, 2005], 
with d as the measured distance, the coordinate of a 3D 
point (see figure 2) can be calculated by equation (1).  

 

Figure 2 Geometrical illustration for coordinate evaluation 
[Kahlmann and Ingensand, 2005] 
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P(X,Y,Z) is the coordinate of the 3D point, s(x,y,0) is 
calculated from image coordinate to Euclidean coordinate, d 
is the measured distance, and f is the focal length.  
 Assuming the camera is a simple pinhole model, in 
which the optical center is at the image center. We can also 
use equation (2) to retrieve the 3D coordinates, if we know 
the Field-of-View (FOV) of the camera, and ignore the 
difference between the distance d and Z coordinate in the 
depth direction, which is reasonably correct since the 
distance in our application is always over 1m and the FOV 
of the range camera is 28 degrees.  

( )tan / 2 (2 ) /
tan( / 2) ( 2 ) /

FOV Z x W WX
Y FOV Z H y H
Z d

⋅ ⋅ −⎛ ⎞⎛ ⎞
⎜ ⎟⎜ ⎟ = ⋅ ⋅ −⎜ ⎟⎜ ⎟

⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠

p
           (2) 

In equation (2), we assume the Z coordinate equal the 
measured distance d, W is the width of the image, H is the 
height of the image. W, H, x and y are image coordinates in 
pixel units. In this way, we avoid the burden of calibrating 
the range camera. Actually, it is troublesome to calibrate the 
range camera, because of low-resolution and an unevenly 
illuminated image with a large amount of noise. 
 Compared to stereo vision systems, which are the 
traditional visual methods to capture the depth data, this 
device has the following advantages: 
1. Illumination-invariant and color-invariant. Because it 

actively emits modulated infrared light, it is not 
influenced much by the ambient illumination condition 
and color of the objects in the environment. 

2. Texture-independent. Because stereo vision methods 
are highly dependent on the texture on the objects to 
find the correspondence between multiple images, the 
range camera significantly outperforms the stereo 
methods in texture-insufficient regions.  

3. Depth resolution is approximately 5~15mm in the 
distance range of 0.5 to 3 meters, variable with 
exposure time and reflectiveness of the surface. A 
comparison of the PMD range camera and stereo-vision 
for the task of surface reconstruction has been 
investigated by [Beder et al., 2007]. Their experiments 
show that the PMD range camera system outperforms 
the stereo system in terms of achievable accuracy for 
distance measurements. 

4. Both depth and grey scale data is captured at high frame 
rate (15 fps). 

 Although having the above advantages, this range 
camera has some drawbacks, such as a narrow Field-of-View 
(28 degrees), low resolution (160x120), and the distance data 
contains a large amount of noise, especially near the edges of 
the objects, which is often referred to a ‘jump boundary 
effect’. 

3.1 Depth data processing  
There is a significant amount of noise in both depth and 
intensity data from the sensor. Pre-processing of the depth 
data is essential. The standard deviation of the range depth 
data is found to be reciprocal to the signal amplitude [M. 
Frank, 2009]. We remove the “bad-pixels” first, whose 
amplitude of reflection is below a specified threshold. Low 
amplitude indicates that their depth data is inaccurate 
because of low signal/noise ratio. The depth values at these 
removed points are assigned using a linear interpolation 
method. Then we apply a Median filter. Speckle noise can by 
reduced effectively by the Median Filter. However, the most 
annoying noise which is known as ‘jump boundary effect’ 
can not be removed in this way. The points near the edges of 
the objects tend to “merge” into the background. Note the 
distribution of the points on the edge of the hand in figure 3. 
One reason for this error is the limited resolution of the 
sensor chip [Breuer et al., 2007]. 
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 We then find the corresponding hand position in 
the range camera in order to find its depth value. The hand 
is segmented from a cube whose center is the 3D hand 
position.  
 This extra web camera helps to improve the 
accuracy of the 3D hand position, especially in the 
situations mentioned above. However, it also imposes extra 
burden of alignment between the web camera and the range 
camera. Furthermore, when the person is wearing a short 
sleeve clothes, the color based method may locate the hand 
position incorrectly. 
 In the future, the recognition of more types of hand 
shapes will be included. For testing robustness, the 
templates will be created by one person, while hand images 
from several persons will be used in the test stage. The hand 
trajectory recognition method should be improved so that it 
is invariant to the scale of the movements. Gestures 
performed in an outdoor environment will also be tested to 
evaluate the capability of the range camera and the 
robustness of the proposed methods.  
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