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Abstract

This paper proposes a real time hand gesture
recognition system. The approach uses a range
camera to capture the depth data. After some pre-
processing procedures, the depth data is used to
segment the hand and then locate the hand in 3D
space. The hand shape is classified into known
categories using a chamfer matching method to
measure the similarities between the candidate
hand image and the hand templates in the database.
The 3D hand trajectory is recognized by a Finite
State Machine (FSM) method. Each gesture
consists of several states. The 3D hand position
determines the state transition of each gesture
recognizer. Experiments show that the system
performs reliably for recognizing both static hand
shapes and spatial-temporal trajectories in real
time.

1 Introduction

Fast and robust analysis of hand gestures has received
increasingly more attention in the last two decades. Gesture
recognition from a single view is important in the Human-
Robot Interaction (HRI) scenario. Both static hand shape
and dynamic hand trajectories are expressive in our daily
life. These kinds of hand gestures are naturally preferred in
HRI applications.

Various methods have been proposed to segment
and track human hands. Many systems [Imagawa et al.,
1998] [Hong et. al., 2000] have achieved promising
performance; however, these methods only operate under
strong restrictions of the environment, because they rely on
simple clothing, static background, and constant lighting
conditions.

We aim to achieve a real time hand gesture
recognition system in a natural environment. It means we do
not need homogenous clothing and should be able to
perform reliably with cluttered and even non-static
backgrounds.

We investigated the usefulness of a 3D range
camera for our hand gesture recognition system. This
hardware exhibits significant advantages over traditional
cameras in the aspect of unambiguously capturing the depth
data at a high frame rate, which makes the segmentation and
tracking the hand in 3D space easy. Hand shapes are
recognized by the Chamfer Matching method [Borgefors,
1988], and 3D trajectories are recognized using a Finite
State Machine (FSM) method. Gestures are recognized in

real time. This gesture recognition method has wide
applications including human robot interaction, intelligent
rooms, virtual reality and game control.

The remainder of this paper is organized as
follows: after a brief review of the related work in section 2,
we investigate the property of the range camera in section 3.
Hand segmentation and its 3D position are obtained in
section 4, which is the input data for the hand shape and
trajectory recognition algorithms in section 5. In section 6
we present the experiments and the result. Finally,
discussion, conclusion and future work are in section 7.

2 Related work

Hand detection and segmentation is an essential component
for gesture recognition. Many approaches [Mo et. al., 2005]
[Kjeldsen and Kender, 1996] use color information, since
the skin color is a salient feature different from the
background in most cases. However, these methods are not
reliable under unstable illumination conditions, where,
obviously, it is more challenging to extract complete hand
shapes. Some methods use special colored gloves or a
magnetic sensing device (data gloves) [Sturman and Zeltzer,
1994] to simplify the task, but they hinder the naturalness of
daily use. The intentions of the user should be recognized
effortlessly and non-invasively.

Most of the hand trajectory recognition systems
deal with 2D image data. [Starner and Pentland, 1995]
tracked the hand by colored glove and natural skin tone for
American Sign Language recognition. Some methods use
stereo vision to achieve the hand tracking in 3D space.
[Nickel et al., 2004] [Stieflhagen et al., 2004] used stereo
cameras to locate the hand’s position in 3D in order to find
the pointing direction. [Abe et al., 2000] proposed a 3D
drawing system using a top-view camera and a side-view
camera. Stereo vision is a popular choice for depth sensing.
However, it is highly dependent on the textures of the object
to find the correspondence between images, and becomes
erroneous for texture-insufficient surfaces.

A time-of-flight range camera has become popular
in the recent years. Although the technology is still in its
early days, resulting in low resolution, noisy data etc, it has
already been applied in a number of applications such as
game controlling [Wang et al., 2008], upper body gesture
recognition [Holte et al., 2008] [Grest et al., 2007], robot
navigation [Prusak et al., 2007], and mobile human-robot
teaming [Loper et al., 2009].



3 Range Camera

A 3-D range camera is employed as our apparatus. It
delivers the depth data of objects in its view at every pixel at
a high frame rate. The distance of 3D points is determined
by a Time-of-Flight (TOF) approach using modulated
infrared light. The phase shift between the reference and
reflected signal is determined by a sampling and correlating
method for each pixel, and then the distance is calculated by
the phase shift. See [Linder and Kolb, 2007] for more
details about the operational principle of the range camera
technology. Figure 1 shows the range camera we adopted,
which is developed by PMD Technologies GmbH.

Figure 1 PMD Range Camera

As illustrated in [Kahlmann and Ingensand, 2005],
with 4 as the measured distance, the coordinate of a 3D
point (see figure 2) can be calculated by equation (1).

3D point
P(X.Y.Z)

Figure 2 Geometrical illustration for coordinate evaluation
[Kahlmann and Ingensand, 2005]
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PXY,Z) is the coordinate of the 3D point, s(x,y,0) is
calculated from image coordinate to Euclidean coordinate, d
is the measured distance, and f'is the focal length.

Assuming the camera is a simple pinhole model, in
which the optical center is at the image center. We can also
use equation (2) to retrieve the 3D coordinates, if we know
the Field-of-View (FOV) of the camera, and ignore the
difference between the distance ¢ and Z coordinate in the
depth direction, which is reasonably correct since the
distance in our application is always over 1m and the FOV
of the range camera is 28 degrees.
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In equation (2), we assume the Z coordinate equal the
measured distance d, W is the width of the image, H is the
height of the image. W, H, x and y are image coordinates in
pixel units. In this way, we avoid the burden of calibrating
the range camera. Actually, it is troublesome to calibrate the
range camera, because of low-resolution and an unevenly
illuminated image with a large amount of noise.

Compared to stereo vision systems, which are the
traditional visual methods to capture the depth data, this
device has the following advantages:

1. Nlumination-invariant and color-invariant. Because it
actively emits modulated infrared light, it is not
influenced much by the ambient illumination condition
and color of the objects in the environment.

2. Texture-independent. Because stereo vision methods
are highly dependent on the texture on the objects to
find the correspondence between multiple images, the
range camera significantly outperforms the stereo
methods in texture-insufficient regions.

3. Depth resolution is approximately 5~15mm in the
distance range of 0.5 to 3 meters, variable with
exposure time and reflectiveness of the surface. A
comparison of the PMD range camera and stereo-vision
for the task of surface reconstruction has been
investigated by [Beder et al., 2007]. Their experiments
show that the PMD range camera system outperforms
the stereo system in terms of achievable accuracy for
distance measurements.

4. Both depth and grey scale data is captured at high frame
rate (15 fps).

Although having the above advantages, this range
camera has some drawbacks, such as a narrow Field-of-View
(28 degrees), low resolution (160x120), and the distance data
contains a large amount of noise, especially near the edges of
the objects, which is often referred to a ‘jump boundary
effect’.

3.1 Depth data processing

There is a significant amount of noise in both depth and
intensity data from the sensor. Pre-processing of the depth
data is essential. The standard deviation of the range depth
data is found to be reciprocal to the signal amplitude [M.
Frank, 2009]. We remove the “bad-pixels” first, whose
amplitude of reflection is below a specified threshold. Low
amplitude indicates that their depth data is inaccurate
because of low signal/noise ratio. The depth values at these
removed points are assigned using a linear interpolation
method. Then we apply a Median filter. Speckle noise can by
reduced effectively by the Median Filter. However, the most
annoying noise which is known as ‘jump boundary effect’
can not be removed in this way. The points near the edges of
the objects tend to “merge” into the background. Note the
distribution of the points on the edge of the hand in figure 3.
One reason for this error is the limited resolution of the
sensor chip [Breuer et al., 2007].



Figure 3 A grey scale image (left) and 3D points (right) from
the Range Camera

Overexposure and underexposure will also result in
errors in the depth data. Thus, we frequently calculate the
average intensity value of the images and adjust the
integration time to maintain an average grey value between
125~150.

Fig. 4 shows the effect of the pre-processing on the
depth data using the above methods. The left image is the
grey image from the range camera, showing the scene. The
middle image is rendered using the original depth data. The
right image illustrates the processing effect. We can see that
the right one is less noisy. The colors represent the depth
information of objects: the RGB color value is assigned as:

R = (d/Maxc)'255
G = (Maxd-d)/Maxd:255 (3)
B=0

d is the depth value, Maxd is the maximum depth of the
points in the scene or a specified value.

Figure 4 The effect of depth data processing

3.2 Error in regions with high velocity

Several studies have been proposed to calibrate the intrinsic
parameters and depth value of the range camera [KahImann
and Ingensand, 2005] [Reulke, 2006]. However, they only
consider static scenes. Very few researches investigated the
performance of the range camera with moving objects.

The “1-tap distance acquisition method” of the
range camera requires that the four consecutive taps are
necessary for a single distance calculation [Oggier et al.,
2005]. If the distance at a pixel senses a change in this time
slot, the distance calculation is falsified. This error is most
serious at the edges of an object, because a distance measure
could be a pixel on an object for the first two taps and the
background for the last two taps. Concretely, this motion
blur effect is illustrated in figure 5. In this experiment, the
person moves a flat board from left to right. The depth data
of the moving objects is shown in the middle image (b) and
the depth data when the object is already static is shown in
the right image (c). Note that this motion blur effect is
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different from the jump boundary effect. The depth value
tends to be larger because the pixels on the border are
“merging” into background. However, on this moving flat
board, the depth data on the edge tends to be smaller. It is
probably because of the instability of the amplitude of the
reflected signal. Therefore, in order to find a relatively
reliable depth data of a moving object, it is reasonable to
consider the depth value at the centroid, since in most cases
the depth value at the centroid varies less compared to other
parts of the object.
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Figure 5 Comparison of the depth data on a moving object and a
static object

4 Hand Segmentation and Trajectory
Extraction

Reliable hand segmentation from the background and other
parts of body is crucial for further analysis. After successful
segmentation, many techniques, such as Haar-wavelet
decomposition [Jacobs, 1995] and Chamfer Distance
Matching [Borgefors, 1988], can be applied to recognize the
candidate hand shape, classifying it into pre-defined
categories. The fineness of segmentation significantly
influences the recognition result correctness.

Skin color information is traditionally used to
locate and segment hand region. To reduce the effect of
variable illumination conditions, the RGB color is often
projected to other color spaces, which separate the color into
brightness and chromatic channels, such as HSV, CIE Lab
etc. However, this kind of methods does not completely
eliminate the effect of the illumination disturbance.

Tracking the hand in 2D images is relatively
simple. However, it is difficult to track the hand in 3D
space. Stereo vision techniques are widely used for this
purpose, but they often suffer from the lack of sufficient
texture on the hands. Furthermore, accurate disparity
computation requires high resolution images and more
computation time.

In contrast to the traditional methods based on
color information, hand segmentation can be achieved using
only depth data. In the human-robot interaction scenario, we
assume that a single person is the nearest object in the
camera’s view. When the person is indicating instructions
by hand gestures, the hand is usually at a distance in front of
the body.

Now we can simply segment the hand by a depth
histogram method. Although the hand is the nearest object
to the camera, we have to take the noise in depth data into
account. As shown in figure 6, we use a histogram method.
We put all the depth data into N bins with an interval of
10cm, and select the bin which indicates the smallest



distance and also contains sufficient number of points. Note
that the bin in a red circle in figure 6 has the smallest
distance value, but contains only 13 points, which indicates
that it consists of noise.

After the hand distance is found, the hand shape is
composed by the points whose depth values are in a range
between [d,- 4d;, d,*+Ad;], where d), is the hand distance,
and 4d; and 4d, are specified thresholds. The hand position
in image coordinate (x,y) is the center of the hand region.
The depth value of the hand is further refined as follows:
check the depth value in a small window of the hand, if they
all fall in the foreground, then use the average value of the
depth data in the window. Otherwise, adjust the position of
the small window first until they all fall in the foreground.
In this way, the 3D hand trajectory can be obtained.

Morphological operations i.e. erode and dilate, are
applied to eliminate the noise. Then the hand shape is
normalized to a uniform size and the edges are easily found
from the binary image.

7000

BO00 -
S000 -
4000

3000 -

2000 -
1000 -
o

o 0s 1 1.5 2 25 3
distance (meters)

Murnber of points

Figure 6 An example of hand gesture and the histogram of the
depth data

5 Hand gesture Recognition

5.1 Hand shape analysis

For hand shape analysis, a database needs to be
established. A large set of images containing various hand

patterns are recorded with known labels in the training stage.

Figure 7 show the samples of hand shapes that we are
currently interested in. Both left and right hands could be
used for gesturing, but only left hand shapes are shown here.

s |9

One Two

Three

Australasian Conference on Robotics and Automation (ACRA), December 2-4, 2009, Sydney, Australia

y | ¥
Turn Right (a)
Vd R

Turn Right (b)  Turn Left (a) Turn Left(b)

[\

Stop (b)
Figure 7 hand shape patterns
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To match a candidate hand image against our
database, the chamfer distance matching method [Borgefors,
1988] is employed.

Distance transformation (DT) of the hand shape
template images are calculated in advance before the test
stage. DT is a reasonable approximation of the Euclidean
distance. In a binary edge image, edge pixels are set to zero
and non-edge pixels are set to infinity. The value of the
pixel at position (i,7) at iteration step & is then computed as
Equation 4 [Borgefors, 1988].

ko _ H k-1 k-1 k-1
v, =min(v  +4,v7, +3v +4,

j i-1,j+1
k-1 k-1 | k-1 k-1
Vit 3, ViVt 3, Vigjat 4,
k-1 k-1
vi+l,j + 3’ vi+1,j+1 + 4)

(4)

The iterations continue until there are no value
changes. Figure 8 shows an example of distance
transformation. The hand is first segmented out of
background (left image). The edges are found and
normalized (middle image), then the distance transformation
is calculated (right image).

y_

Figure 8 example of distance transformation

The matching procedure measures the similarity of
two edge images. The matching score of a binary edge
image 1(ij) and a distance transformation DT(i;) is
calculated as Equation 5.

1 .. .
s= =2 UG ))-DT(, j))’
" i 5)
[Borgefors, 1984] compared four different
“averages” for the matching measure: median, arithmetic,



root mean square (r.m.s) and maximum. The r.m.s was
found to give fewer false minima than others. The smaller
the matching is, the higher the similarity is. A perfect fit will
result in zero.

In order to measure the similarity between two
images, e.g. a candidate image A and a template hand image
B (the distance transformation of the template, DTg, is
already obtained in advance), first, the candidate image is
normalized and extracted to a binary edge image I, then a
matching score is calculated by equation 5; second, the
distance transformation of the normalized candidate image
DT, is derived as well as the binary edge image of the
template Ig, then another matching score is calculated by
equation 5. These two scores are added together as the final
similarity measurement between the candidate images A and
the template B. The similarity measurements between the
candidate and all the templates in the database are calculated
and the smallest score indicates the recognized gesture.

5.2 3D hand trajectory recognition

A hand trajectory is also expressive in an interaction. Some
intentions are naturally expressed by movement rather than
static hand shapes.

The hand trajectory in 3D space is captured by the
method in section 4. Since the hand normally has an
obvious pause between a new gesture and previous one, we
take it as the starting point of a gesture. The subsequent
hand 3D position is relative to the starting position. In this
way, the gesturer does not need to start from a particular
fixed position every time.

The trajectories are recognized by a Finite State
Machine (FSM) method. Each gesture is defined to be a
sequence of state transitions in the spatial-temporal space.

A state S is defined as a simple vector <u,d>, where
u is the center of the state’s space, d is the distance threshold
in the x, y, z directions. The 3D space is divided into several
cells representing different states. Note that each FSM
recognizer has its own way of splitting the spatial space. A
3D position p(x,y,z) may be in the ith state of gesture one,
while in the jth state of gesture two.

When a new hand position arrives, each FSM
recognizer determines whether to stay at the current state or
enters the next state based on the spatial parameters. A
gesture is recognized if a recognizer reaches its final state
[Hong et al., 2000]. Each FSM recognizer may have
different number of total states, thus this method allows
simple movements to be represented by fewer states and
complicated gestures by more states.

This online recognition method determines a state
transition when a new hand position is provided. It is
different from the approaches that require complete gesture
data before a recognition procedure begins.
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6 Experiment and result

The hand gestures are performed at a distance of about 1.5
meters from the range camera in an indoor environment.

6.1 Hand shape recognition

We tested the ability of the system to recognize the hand
shapes shown in figure 7. The hand shape templates were
captured and stored in advance, and the test was performed
in another day. To further test the robustness of the method,
it will be tested with different people in the near future.

We noticed that the rotation of the hand both
around horizontal and vertical axes may make the
appearances of the hand different, which would affect
chamfer distance matching result. Furthermore, in some
cases, the angular separation (the fingers are sharply or
narrowly separated) may also influence the matching score.
Although it is difficult to achieve viewpoint independent
performance because of self-occlusion from a single view,
the slight rotation in space should not affect the recognition
output. Therefore, in the training stage, we collected 10~18
hand shape templates for each gesture to make the
recognition more robust. Each gesture is conducted with
horizontal rotations of -10° -5° 0° 5° and 10° vertical
rotation of -10, 10, and several angular separations if
multiple fingers are involved. Figure 9 gives a rough idea of
the various appearances of the same gesture.

ANE

Figure 9 Examples of difference appearances of the same gesture

During the period when the hand is changing from
one gesture to another, the shape is not recognizable, so for
testing purpose, we extracted images from videos, and
manually delete the hand images which can not be
recognized even by human. The offline recognition
confusion matrix is shown in table 1. The gestures from 1 to
11 in the table are shown in figure 7 in the same order. The
overall recognition error rate is under 3%.

For the real time, online recognition, we use a
stability counter. Only when the same recognition result
repeats several times it will be confirmed as a recognized
gesture. The online recognition rate is 98%, because of the
stability counter.

Like other training-test methods, the selection of
the training set is vital to recognition results. If the training
set covers most of the gestures which appear in the test set,
then the error rate is relatively low.

6.2 Hand trajectory recognition

Five types of hand trajectories are trained and tested using
the FSM method in section 5.2, including “wave hand”,

” ”

“draw a triangle”, “pick up”, “put down” and “come here”.



Several key frames of the movement from the
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video are shown in figure 10. The person waved his hand gestures States | States
from left to right and then from right to left. Table 2 shows finished | left
the states transition of each gesture according to the 3D Wave hand 1 4
hand position in figure 10. Only “wave hand” went through Draw triangle 1 3
all its states, so it is recognized. Come here 3 5 5 0
Pick up 1 2
1 2 3 4 5 6 7 8 9 10 11 total Put down l 2

1 82 0 1 0 2 2 0 0 0 0 0 87

2 76 3 2 81

3 3 64 3 70

4 57 3 60

Table 3 states transition of each gesture in figure 11

The overall recognition rate of the hand trajectories is about
88%. Details for each gesture are shown in table 4.

5 59 59

7 51 51

10 2 68 70

Gestures’ Performed | Recognized | Recognition
names times times Rate

Wave hand 10 9 90%

Draw triangle | 10 8 80%

Come here 10 10 100%

Pick up 10 7 70%

Put down 10 10 100%

11 70 70

Table 1 hand shape recognition confusion matrix

Figure 10 example of waving hand

gestures States States
finished | left

Wave hand 3(3|4|5 5 0

Draw triangle 2 2

Come here 1 4

Pick up 1 2

Put down 1 2

o

Table 2 states transition of each gesture in figure 1

Figure 11 shows some frames of the video in which a
person moved his hand forwards and backwards to express a
“come here” gesture. The states transitions of each gesture
are shown in table 3. Only the third gesture went through all
its states and it is recognized as “come here”.

Figure 11 example of “come here”

Table 4 hand trajectory recognition result

Using the method in section 5.2, simple and complicated
movements can have different numbers of state transitions.
It can detect the start and end point of a gesture
automatically, and a gesture is not required to start at a
particular position. However, the scale of the movement
may affect the result.

7 Discussion and Conclusion

A real time hand gesture recognition system has been
described. Taking advantage of a range camera, hand
segmentation and 3D tracking becomes easy and invariant
to the changes in the environment. Experiments show that
the chamfer matching measurement for hand shape analysis
and the FSM method for recognizing the hand trajectory
achieve high recognition rates.

The main drawback of the method using only depth
data in section 4 is that, when the hand and forearm are in
the same depth range, the segmentation using only depth
data is not able to further distinguish hand from forearm
simply. In this situation, the hand positions in the images
which are calculated by finding the central points of the
segmented region will also be erroneous.

An ordinary web camera can be used in
conjunction with the range camera to provide useful color
information and higher resolution, which is also potentially
useful for face detection and recognition.

First, image coordinates of the web camera and the
range camera is aligned. Second, the objects in the
background whose depth values are over a specified
threshold is removed in the range camera. Third, the
corresponding regions of the background in the web camera
are removed. Last, the hand is tracked by color information
from the web camera using a Particle Filter method.



We then find the corresponding hand position in
the range camera in order to find its depth value. The hand
is segmented from a cube whose center is the 3D hand
position.

This extra web camera helps to improve the
accuracy of the 3D hand position, especially in the
situations mentioned above. However, it also imposes extra
burden of alignment between the web camera and the range
camera. Furthermore, when the person is wearing a short
sleeve clothes, the color based method may locate the hand
position incorrectly.

In the future, the recognition of more types of hand
shapes will be included. For testing robustness, the
templates will be created by one person, while hand images
from several persons will be used in the test stage. The hand
trajectory recognition method should be improved so that it
is invariant to the scale of the movements. Gestures
performed in an outdoor environment will also be tested to
evaluate the capability of the range camera and the
robustness of the proposed methods.
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