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Abstract

Robust texture recognition in underwater image se-
quences for marine pest population control such
as Crown-Of-Thorns Starfish (COTS) is a rela-
tively unexplored area of research. Typically, hu-
mans count COTS by laboriously processing indi-
vidual images taken during surveys. Being able to
autonomously collect and process images of reef
habitat and segment out the various marine biota
holds the promise of allowing researchers to gain
a greater understanding of the marine ecosystem
and evaluate the impact of different environmen-
tal variables. This research applies and extends the
use of Local Binary Patterns (LBP) as a method for
texture-based identification of COTS from survey
images. The performance and accuracy of the al-
gorithms are evaluated on a image data set taken on
the Great Barrier Reef.

1 Introduction
The Great Barrier Reef is one of Australia’s most well known
assets. It provides income through the hundreds of thousands
of tourists that visit the reef each year bringing in an estimated
$14 billion1 per annum, and is also home to millions of dif-
ferent species of marine animals. It is vital for the longevity
of the reef to be able to quickly and accurately monitor how
well the ecosystem can maintain both the natural and human
influences that affect the reef each year.

The Great Barrier Reef is also one of the world’s most en-
vironmentally sensitive areas. In the last 40 years there have
been numerous outbreaks of Crown-Of-Thorns Starfish ob-
served. Crown-Of-Thorns Starfish (COTS) are a particular
natural pest that feeds on coral and in the process kills it. This
is shown in Figure 1 where the dead coral appears bleach
white until algae begins to grow on it. If COTS reach out-
break proportions (approximately 30 per hectare[Engelhardt
and Lassig, 1996]), they can rapidly cause extensive damage
to large areas of coral reef.

1Tourism Queensland Annual Report 2001-2002

Figure 1: Crown-Of-Thorns Starfish (COTS) on coral.

Many environmental organisations, Universities, Govern-
ment agencies, and members of public have provided ex-
tensive resources to understand, monitor and control COTS
outbreaks. However, new outbreaks occur in cycles of 1-15
years, making it difficult to find direct causes, or even control
COTS numbers.

Current monitoring of this problem is conducted entirely
by humans and is very prone to error. There are two primary
techniques to count COTS. In the first method, divers record
video of a section of reef and humans later count COTS when
reviewing the video. The second method is called a Manta
Tow Survey[Bass and Miller, 1995] whereby a human is
towed behind a boat and attempts to count the number of ani-
mals they see. This number is recorded and then extrapolated
to approximate the distribution over many square kilometers.
This technique is inaccurate as research has shown[Moran
and De’ath, 1992] that it underestimates populations and can
quite possibly overlook major populations of COTS when the
particular transect undertaken was unrepresentative of the re-
gion.

Considering the enormous size of the reef (349,000 square
kilometers) the current methods of monitoring COTS num-
bers is unable to generate accurate and representative large
scale distribution maps. To perform this task on the scale
of the entire reef is excessively expensive, with the costs of



divers, ships, and the hindrance of weather and health and
safety issues. Therefore, it makes sense to devise an al-
ternate, cost effective and safe method of performing these
tasks. The proposed research is to perform autonomous pop-
ulation monitoring involving two key activities: (1) hav-
ing a vehicle autonomously collect the images, and (2) be-
ing able to perform image recognition of COTS. The first
activity involves using an Autonomous Underwater Vehicle
(AUV) to perform video transects of the reef as shown in Fig-
ure 2 and described in other research[Dunbabinet al., 2005a;
2005b]. The second activity is the focus of this paper.

Figure 2: The Starbug AUV during reef trials.

The second activity requires the robust segmentation
(recognition) of COTS from an arbitrary image. Color seg-
mentation is not reliable as COTS vary in color considerably
depending on their age, location and altitude at which the
image was taken. COTS do however have distinctive thorns
which leads to the potential use of texture as a reliable feature
for the recognition of the starfish. A number of methods were
reviewed and tested for this role being namely Local Binary
Patterns (LBP), Gabor Wavelets and the Hough Transform.
Initial testing showed that LBP had the greatest potential by
accurately detecting the most COTS with greatest rejection
rate of the rest of the image. LBP’s have previously been
used for coral detection[Sorianoet al., 2001] with accuracies
of around 40% stated.

Pilot studies on the use of Gabor Wavelets and Hough
Transforms on small data sets were not promising. There-
fore, the focus of this paper is on LBP classification with a
discussion on these techniques given in Section 4.

This paper describes the preliminary investigation into the
use of LBP’s as a method for texture mapping and correlation
of COTS from survey images. A large image data set was
obtained from the Australian Institute of Marine Research
(AIMS) which contained COTS in various poses. The per-
formance and accuracy of the algorithms are evaluated on the
image data set. This paper focuses on the detection of ‘blobs’
of starfish texture and not the process of how to differentiate
between two or more touching animals.

1.1 Paper Outline
The remainder of this paper is structured as follows: Sec-
tion 2 describes the texture-based classification procedure de-
veloped using LBP with Section 3 presenting results on the
classification performance for identifying COTS from the im-
age set obtained from AIMS. Finally, Section 4 will discuss
the issues encountered during this research and focus of fu-
ture research.

2 Texture-based Marine Biota Classification
Texture recognition is the most suitable form of segmentation
when performing underwater biota identification. The pri-
mary reason for this comes down to the environment. In un-
derwater environments red wavelengths of light get absorbed
much faster then the shorter (i.e. blue) wavelengths. This
means that depending on the depth, the environment will gen-
erally appear a blue/green colour. Di Gesu et.al[Di Gesu,
2003] present a method of starfish identification and tracking
using color segmentation and background subtraction. These
starfish are generally brightly colored with respect to their
surroundings and have a regular shape. COTS on the other
hand are reasonably camouflaged and highly flexible crea-
tures that are found in varying poses (e.g. flat, curled, par-
tially hidden) making shape or template matching inadequate
in this particular instance. The thorns however, are the most
distinguishing and recognisable feature (texture) of COTS
and will be utilised for this automated detection scheme.

2.1 Local Binary Patterns
This is a greyscale invariant method of detecting textures.
This method has been used previously with limited success in
the detection of coral in underwater video sequences[Soriano
et al., 2001]. To achieve greyscale invariance, a pixel “gc” is
selected and its greyscale value subtracted from each of the
neighbouring pixels (gp). Normalisation is then achieved by
the addition of these differenced neighbouring pixels. How-
ever, it is still possible to observe large greyscale shifts. To
overcome this scenario, only the signs of the neighbouring
pixels are chosen[Ojalaet al., 2002]. If a pixel is greater or
equal to zero it is assigned ‘1’, otherwise ‘0’. Therefore the
basic LBP can be define as Equation 1.

LBP =
P−1

∑
p=0

s(gp −gc) =
P−1

∑
p=0

(gp ≥ gc) (1)

wheres(x) is defined as

s(x) =

{

1, x ≥ 0
0, x < 0

(2)

While this equation is greyscale invariant, it does not
provide enough extra information for adequate correlation
when comparing with images. Studies have shown that there
are a number of ways to get rotationally invariant informa-
tion [Ojalaet al., 2002; Pietikainenet al., 2000]. Equation 3



shows an alternate LBP with improved rotational invariance.
Ojala [Ojala et al., 2002] concluded this as the best method
for LBP as it improved discrimination by only using uniform
patterns rather than all patterns. Uniform patterns are defined
as being able to switch from 1 to 0 once and 0 to 1 once.
This eliminates problems arising from high frequency pat-
terns such as 10101010.

LBPP,R =

{

∑P−1
p=0 s(gp −gc) ,U (LBPP,R) ≤ 2

else, P +1
(3)

where

U (LBPP,R) = |s(gP−1−gc)− s(g0−gc)|

+
P−1

∑
p=1

|s(gp −gc)− s(gp−1−gc)|

In Equation 3,R specifies the radius from the center pixel
andP specifies how many positions are available in the pat-
tern. This means when considering a pixels nearest neigh-
boursP = 8. If the pattern is not uniform, then it is assigned
an invalid number (P+1).

An optimised method of calculating the LBP based on the
work of Pietikainen[Pietikainenet al., 2000] was imple-
mented in this investigation. This optimisation is especially
beneficial when using Matlab which performs matrix opera-
tions much faster than looped operations, however, it requires
more memory. The improvement in processing speed signif-
icantly lowered the LBP generation time from 15 minutes to
approximately 20 seconds. The algorithm works by creating
P copies of the image. The size of the image is increased by
padding an extraR zeros around the outside of the first im-
age. In the case of the nearest neighbour solution (R = 1),
one layer of zeros are placed around the outside of the image
as shown in Figure 3. The subsequent copies are positioned
such that each image is shiftedR pixels around the central
image to create the circle. Again the nearest neighbour solu-
tion means that the image is moved to occupy eight positions.
Once this has occurred, the output image is simply an ad-
dition of matrix logical comparisons to see if the pixels are
greater than the centred image pixels.

2.2 Texture Database
A texture database of 384x384 pixel textures was created
from representative images. A total of 27 base textures were
created of which 12 were COTS and 15 were desired reject
textures of various corals and other marine surfaces. Each
texture has its Local Binary Pattern created and stored for use
in image classification.

It was observed that instead of looking for changes of
the circular radius for multi-scale analysis, improved results
could be obtained by scaling the sample textures. Therefore,
in this analysis 3 different texture scales were used; one that
was nearest neighbour, one that was down sampled by 25%

Figure 3: Optimised matrix method for LBP calculation.

before applying nearest neighbour, and the final up sampled
by 25%. This has obvious limitations when images are at high
altitude which is the focus of future research.

It was also found that some sample coral textures had sim-
ilar histograms to representative COTS textures. Figure 4
shows a series of sample textures and their respective his-
tograms. Although some histograms appear very similar,
the combinations from just nearest neighbour and the multi
resolution approaches assist to differentiate the different his-
tograms and provide a ‘good’ solution. It is also interesting
to not that absence of data in the ninth bin indicates that the
textures contain only uniform patterns.

2.3 Texture Matching
A log-likelihood measure is used for comparing the similarity
between textures as described by

L(S,M) =
B

∑
b=1

Sb logMb (4)

whereB is the number of bins in the histogram,Sb andMb

correspond to the sample and model probabilities at binb re-
spectively. In this implementation 9 bins were chosen to dif-
ferentiate between various textures. However, this statistic is
not quite adequate for scale invariant solutions so it has been
extended[Topi et al., 2000] to accommodate for the extra
radii calculated for the LBP as described by Equation 5.

L(S,M) = −
H

∑
h=1

N

∑
n=1

ThsShn

∑h Ths
ln

ThmMhn

∑h Thm
(5)

whereShn andMhn correspond to the probabilities of binn in
thehth sample and model histogram, respectively.Ths andThm

denote the total number of entires used in producing sample
and model histogramh, respectively. Using this classification



(a) COTS

(b) COTS histogram

(c) Coral

(d) Coral histogram

(e) Sand

(f) Sand histogram

Figure 4: Sample textures and histograms for COTS, coral
and sand.

method it is possible to determine the ‘best’ matched texture
for a particular region on the screen.

2.4 Process
Once an appropriate texture database has been generated as
described in Section 2.2, the complete image processing tech-
nique consists of the 6 following steps:

1. Top Hat filtering with disc structuring element

2. Grey scale conversion (MATLAB)

3. Local binary pattern created

4. Histograms created

5. Log-likelihood measure performed on image blocks

6. Count number of detected COTS ‘blobs’.

Steps 1-3 are performed once on the whole image, whilst
steps 4-6 are performed in loop-fashion on sub-sections of the
image. The first step, Top Hat filtering, is an operation that
subtracts the original image from an “opened” version of the
image. An “opened” image is defined as the erosion of the
image using a structuring element and then dilation of result-
ing image with the same element. This operation can usually
highlight shadowed regions in images and is performed to en-
hance the LBP and further reduce major greyscale shifts. Fig-
ure 5 shows a representative image before and after Top Hat
filtering.

The LBP was computed once for the entire image, how-
ever, for scale invariance, multiple radii are required. Inthis
investigation, it was decided to have multiple radii on the tex-
ture database rather than on the input image as these can be
precomputed, significantly speeding up the entire image pro-
cess time. Figure 6 shows the LBP of the Top Hat filtered
image of Figure 5.

The first of the looped operations on the image is the cre-
ation of histograms for texture comparison. These histograms
were first computed in 2D and then summed together to cre-
ate the nine bins. When computing a histogram, a 50x50 pixel
block is selected with an overlap region of 200 pixels applied
to create a 450x450 pixels region. This large block size en-
ables the algorithm to classify greater sections of COTS es-
pecially around the COTS leg area where it can change from
COTS to coral then back to COTS again. The log-likelihood
measure is then used to find the best matched texture for this
region. When matching the histograms against the textures,
the resulting output region is only the central 50x50 pixel
block. The entire process is computed again with the central
block shifted 50 pixels and repeated across the entire image.

The resulting binary output from texture comparison is
checked to see if any holes exist within an identified ob-
ject. The likelihood that multiple COTS touching form a
‘donut’ shape is minimal, so it is reasonably valid to ‘fill in’
any closed holes that arise. Figure 7 shows the results of a
COTS classification before and after the central region has
been filled by the algorithm.



(a) Original image

(b) Image after Top Hat filtering

Figure 5: Effect of top Top Hat filtering on reef image.

Additionally, a minimum ‘blob’ size constraint was added
to minimise detection of random blocks. If a region is con-
nected with 5 or less blocks it is deemed to be an unlikely
texture. This problem of misclassification often arises with
changes of depth in the water. The proposed AUV that will
collect images for this processing is capable of altitude con-
trol, therefore, the size of COTS in the image would be more
consistent than those from this investigation.

3 Results
The data set used for this analysis was sourced from the Aus-
tralian Institute of Marine Science (AIMS). A total of 80 im-
ages were obtained both with and without starfish in the im-
age. The images used were approximately 3 Mega pixels in
size and taken from various angles, distances and depths from
the COTS and at different image and quality (focus).

The algorithm described in Section 2 was applied to all
images with the number of COTS detected by the algorithm
and the area of classified image (in pixels) recorded along
with the actual number of animals obtained from individual
analysis of each image. Figure 8 shows the results of the
detected number of starfish compared with the corresponding
actual number of starfish in the scene for all 80 images.

Figure 6: Local Binary Pattern Output.

As seen from Figure 8, the algorithm resulted in accurately
detecting the presence, or non-presence, of a starfish in 65%
of the images and correctly counted the number of starfish
in 48% of the images. The output from a correctly classified
COTS is shown in Figure 9(a). Later analysis of the images
for which the algorithm failed to detect any COTS (17% of
the images), showed that they were slightly out of focus or
taken at high altitude compared to the other images, poten-
tially contributing to the poor detection in these images.

The algorithm did however, falsely classify some non-
starfish textures as starfish. The percentage of a false positive
classification was 31%. An example of false positive clas-
sification is shown in Figure 9(b). In general, false positive
classification resulted from images taken at relatively high al-
titudes. The deeper the image the more likely chance of mis-
classification.

Figure 10 shows the area of image that is classified at
COTS compared to the actual area for all the images. The
algorithm on average found 49% of the actual area identified
as COTS with a median of 65%. This average is biased by the
results where the algorithm did not detect a COTS. Discard-
ing, those cases of non-detection, the algorithm on average
correctly classifies 77% of the actual COTS in the image.

The current algorithm implementation is written in MAT-
LAB and takes just over 2 minutes to run per image (Pentium
4 3GHz, 1024MB RAM). The bulk of the processing is ac-
tually contained in computing and comparing histograms and
not in the creation of the Local Binary Pattern. The final stage
that removes the small blocks, counts the number of correct
pixels and overlays the number on the image takes the largest
proportion of time approximately one third of total time. The
following list describes the key steps and the percentage of
total processing time required to perform the task:

1. Top hat filtering, resizing and rgb2gray (23.6%)

2. LBP calculation (5.2%)

3. Calculating histogram (22.5%)

4. Compare textures (7.7%)



(a) Before

(b) After

Figure 7: Classification results of COTS before and after the
central unclassified region has been filled.

5. Count and render to screen (41.0%)

From this it can be seen that rendering to screen takes a
significant proportion of the processing time whilst also tak-
ing a large amount of memory thus slowing the system as it
has to page to get the required memory.

4 Discussion
Whilst the above analysis is far from exhaustive, it has high-
lighted a number of conditions that are required to obtain
best COTS identification accuracy. The classes of images for
which the algorithms were observed to performed less accu-
rately were:

1. Images taken at altitude where the COTS and its texture
are a small proportional of the overall image (e.g. see
Figure 11(a)).

2. Textures whose LBP’s look similar to COTS (e.g. see
Figure 11(b)).

3. Images that are slightly out of focus.

The first condition can be moderated by performing con-
trolled survey transects such as those obtained using an AUV,

Figure 8: Number of COTS detected and counted for all im-
ages.

whereby reducing the altitude from the camera to the seafloor
and increasing the size of objects in the image. Addressing
the second problem is more difficult and the area of current
research. Image quality is important, and must be addressed
at the hardware level to ensure the thorns are clear and sharp.

Another observed deficiency of the current processing
method is identifying (counting) multiple COTS in an image
that are touching each other. Figure 12 shows a processed
image where the interconnected COTS were correctly iden-
tified, however, the counting routine only identified two an-
imals when there is actually 5 in the scene. Improving the
counting routine is a current area of research and will be re-
quired if accurate population monitoring is to be obtained.

Preliminary investigations have also been undertaken into
alternate image processing techniques to improve COTS clas-
sification. These were:

1. Gabor wavelets

2. Hough transforms.

The initial failure of Gabor Wavelets is believed to be cred-
ited to the environment in which the photos were taken. Since
lighting is different in all images it is hard to match textures
accurately all the time. However, there has been some success
in other areas such as Arial photography[Manjunath and Ma,
1996] which warrants continued research in this area.

The unique characteristic of the starfish are its straight
thorns, which has lead to the development of a technique to
find these straight lines. Taking a Hough transform of the im-
age and finding intersecting lines of the size and density of
the thorns is highly dependant on the image processing being
able to resolve sharply the thorns of the COTS. If the depth
of COTS is too deep, the thorns are no longer clearly defined
to be detected. An initial investigation of this technique was
promising but also falsely classified shelf or stag coral. The
straight lines from this type of coral would be detected as
thorns and cause the algorithm to have many false classifica-
tions.



(a) Correctly detected COTS

(b) False positives

Figure 9: Classification results of COTS in scene.

5 Conclusions

This paper presented and evaluated the application of Local
Binary Pattern’s as simple but powerful feature descriptorfor
classifying Crown-Of-Thorns Starfish from an image. The al-
gorithm presented was applied to a set of 80 images obtained
from the Great Barrier Reef. The results show that it could
correctly detect the presence of a COTS in 65% of the images
which had COTS in them. The algorithm was on average
also able to find 77% of the total COTS in the image when a
starfish was detected.

The technique was found to perform less accurately on im-
ages that were taken at altitude where the texture and size of
the starfish was small compared to the image resolution, and
when the image was slightly out of focus.

Future research is expanding the classification scheme to
accommodate greater image altitude, poorer image quality
and greater rejection of similar looking corals. Additionally,
the system will be integrated into the AUV for autonomous
population monitoring.

Figure 10: Percentage of total image area detected as COTS.
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