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Abstract

This paper presents results of an application of
vision-aided bearing-only Simultaneous Locali-
sation And Mapping (SLAM) for an Unmanned
Aerial Vehicle (UAV) while operating over un-
structured, natural environments. A single
colour vision camera is used to observe the ter-
rain from which image points corresponding to
both man-made and natural features are ex-
tracted. The SLAM algorithm estimates the
complete 6-DoF motion of the UAV along with
the three-dimensional position of the features in
the environment. An Extended Kalman Filter
(EKF) approach is used where a technique of
delayed initialisation is performed to initialise
the 3D position of features from bearing-only
observations. Results are presented by running
the algorithm using inertial sensor and vision
data collected during a flight test of a UAV.

1 Introduction

The Simultaneous Localisation and Mapping (SLAM)
problem has been an active research area within the
robotic community over the last few years. Most demon-
strated implementations of SLAM have involved low
speed indoor robots or outdoor ground vehicles operat-
ing in structured, artificial environments. In applications
such as search and rescue, surveillance/picture compi-
lation and planetary exploration [Braun et al., 2004],
where a high degree of maneuverability/vehicle speed
and large area coverage ability is required, the use of
autonomous airborne platforms has become a promising
alternative to ground based vehicles. In these applica-
tions the vehicle is often required to operate over un-
known terrain or where existing navigation infrastruc-
ture such as the Global Positioning System (GPS) is un-
available or unreliable. Even in applications in which
satellite navigation is available, methods such as GPS-
aided inertial navigation [Gebre-Egziabher et al., 1998]

can suffer from several drawbacks such as lack of suffi-
cient satellites/signal dropouts, poor vertical positioning
and errors such as multi-path. Thus the ability to per-
form SLAM on an airborne platform results in a more
robust and reliable localisation and mapping system.

Although laser or radar sensors can be used as a range
and bearing sensor for SLAM, the weight and cost of
these units for airborne vehicles is often prohibitive of
their use in most applications. Vision sensors are of
greater interest due to their light-weight and low cost.
Visual sensors also provide rich information about the
colour and texture of the environment that is often de-
sired as an end product in most information gathering
tasks such as picture compilation and terrain classifica-
tion.

Bearing-only SLAM using a vision sensor has been
demonstrated before for ground-based vehicles (see Sec-
tion 2). Performing vision-aided SLAM in unstructured
environments on an aerial vehicle poses several addi-
tional challenges:

1. Finding and Recognising Environment Fea-
tures - Feature extraction algorithms must often
deal with large deviations in image brightness (look-
ing at the ground w.r.t the sky). An aerial vehicle
can perform rapid manoeuvres and high-speed flight
which affects the sensor pointing direction, features
are often in view of the sensor for only a small num-
ber of frames at a time.

2. Filter Conditioning and Stability - A single
bearing-only observation provides insufficient infor-
mation alone to localise a feature, instead obser-
vations from two sufficiently different poses are re-
quired. Data association is complicated by bearing
only observations and spurious observations in the
feature extraction process. The filter must also con-
tend with highly non-linear process and observation
models from the nature of the vehicle’s motion, re-
sulting in risk of filter inconsistency and divergence.

3. Computational Burden - Localisation updates
must be computed at a high-rate due to the control



requirements of the vehicle, vehicle motion must be
estimated in 6-DoF and the position of features in
3D, adding to the size of the estimated state.

SLAM on an airborne vehicle has been demonstrated
in the past: in [Kim and Sukkarieh, 2003], the au-
thors demonstrate SLAM using artificial targets ran-
domly scattered in the environment. A vision camera
is used to compute the bearing to each feature along
with an estimate of the range based on the known size
of each target. The available range information improves
the stability of the SLAM solution from the bearing-only
case, but limits the applications and environments in
which the system can be deployed. In this paper we ex-
tend the airborne SLAM algorithms to operate without
the need for range observations to features. The result-
ing system can thus be used in environments where range
information cannot be inferred from an image such as in
most of the above mentioned applications.

The SLAM algorithm is run using an Extended
Kalman Filter (EKF) in which the position, velocity and
attitude of the vehicle along with the 3D positions of the
features in the environment are estimated. A delayed
initialisation technique is used to store information from
bearing-only observations until there exists two observa-
tions with a sufficient baseline from which to initialise
the 3D position of the feature.

Section 2 provides an overview of existing methods for
solving the problems faced in bearing-only observations
in regards to feature initialisation and provides the rea-
soning for the approach taken for the aerial vehicle case
in this paper. Section 3 details the SLAM algorithms
used, bearing-only feature initialisation and data asso-
ciation process. Section 4 describes the physical system
and sensors used to drive the SLAM algorithm. Results
of the algorithm are shown in Section 5. Conclusions
and future work are covered in Section 6.

2 Overview of Bearing-only SLAM

This sections offers a background into existing solu-
tions to aspects of the problems faced in implementing
bearing-only SLAM and presents an overview to our ap-
proach for an aerial vehicle.

2.1 Overview of Previous Approaches

Once a well conditioned estimate of the feature posi-
tion is available in SLAM, bearing-only tracking of the
feature from subsequent observations can be tackled in
the standard EKF framework. The issue however with
implementing SLAM using a bearing-only sensor is that
the initial 3D position of a feature can not be determined
from a single observation and thus the estimate of the
feature location is ill-conditioned when represented as
a Gaussian. Instead several measurements are required

with sufficiently different baseline to determine the ini-
tial position accurately.

In the target tracking community, initialisation of 3D
position from bearing observations has been tackled for
example by representing the initial feature position as
a non-Gaussian distribution such as a Gaussian-sum
[Alspach and Sorenson, 1972] or with the use of particles
[Gordon et al., 1993]. These approaches are less popular
for SLAM in which the initial feature position is corre-
lated to vehicle and the rest of the map, thus resulting
in high computational burden when correctly applying
these representations to a high-dimensional state.

In [Davidson, 2003] and [Fitzgibbons and Nebot, 2002]
the authors tackle the initialisation problem by repre-
senting the position of the feature initially using parti-
cles. In both of these cases the authors maintain the
particle distribution decoupled from the estimates of the
vehicle and the rest of the map. Observation made of the
feature during the particle stage will however be corre-
lated to one another through the vehicle errors and thus
ignoring this coupling will result in a loss of informa-
tion to the vehicle states and can lead to an inconsistent
initialisation of the feature.

In [Kwok and Dissanayake, 2004] the authors use a
multi-hypothesis filtering approach in which several hy-
potheses of the position of a landmark are created based
along the line of sight of the first observation of a feature.
Each of the hypotheses is then integrated into the filter
and treated as a separate feature. Subsequent observa-
tions as the vehicle moves around the feature will even-
tually allow all but one of the hypotheses to be pruned
out of the filter. Although computationally efficient, this
approach is losing information from observations made
before initialisation. In [Sola et al., 2005] the authors
similarly use a multi-hypothesis approach where the in-
formation from further observations of a feature before
initialisation is transferred to each hypothesis using fed-
erated information sharing. In using this approach how-
ever there is no guarantee that estimates will be consis-
tent due to updating for hypotheses that do not really
exist.

Another approach to the bearing-only initialisation
problem has been delayed initialisation of the feature
position into the filter by storing observation and vehi-
cle pose information. In [Bailey, 2003] the author stores
the vehicle pose and observation data in the state vector
for a single observation and later uses constrained initial-
isation to compute the feature position when a second
observation is available from a sufficiently different vehi-
cle pose. By correctly maintaining correlations between
the stored pose and the current vehicle pose, information
from the first observation is transferred the current vehi-
cle pose estimate at initialisation in a consistent manner.
The disadvantage of this approach is that observations



of the feature after the first sighting but before the ini-
tialisation are rejected.

[Deans and Herbert, 2000] demonstrates a delayed ap-
proach to localisation and mapping with bearing-only
observations by applying an adaptation of bundle ad-
justment. The idea of the bundle adjustment approach
is to estimate the vehicle pose and landmark positions
by running a batch update with all of the stored observa-
tions. The advantage of this approach is that estimates
are well conditioned, the disadvantage being that the
computational complexity of the algorithm scales with
the number of observations and is thus not suitable to
real-time applications.

2.2 Overview of the Current Approach
In this paper we take a delayed approach to feature ini-
tialisation by storing observations and vehicle poses and
recovering this information in a batch update step when
sufficient base-line exists between two observations. In
our approach the correlations between stored vehicle
poses and the current vehicle pose along with the rest
of the map is maintained in a consistent manner. It
is our belief that initialising the feature in a consistent
manner and recovering all of the information from obser-
vations made before initialisation is of most importance
in SLAM, particularly in the aerial vehicle case where
reliability of the navigation system is paramount.

The aim of our approach is to benefit from well con-
ditioned SLAM estimates by storing observations and
delaying our update while at the same time maintain-
ing the ability of the SLAM filter to be run in real-time,
necessary for navigation feedback for autonomous vehi-
cle control.

In most of the previous approaches to bearing-only
SLAM, data association has either been ignored or in
the case of using vision-based sensors has been based on
matching the visual properties (i.e. colour, texture) of a
feature between observations. There are however some
situations in which data association using visual proper-
ties may not be ideal such as multiple features in an en-
vironment looking the same or changes in lighting or ap-
pearance of features from different viewing angles. The
approach in this paper is therefore to develop a method
for data association that does not depend upon visual
characteristics of a feature thus extending the potential
environments the vehicle can operate within.

3 Airborne SLAM Algorithm

This section describes the SLAM algorithm, feature ini-
tialisation and data association process.

3.1 Extracting Features from Image Data
Figure 1 shows a sample image from the on-board cam-
era taken while in flight. The feature extraction process

Figure 1: Feature Extraction: A sample vision frame
alongside intensity thresholded image. Features are ex-
tracted as appropriately sized groups of connected pixels
that pass the threshold.

finds the normalised intensity of each pixel in the image,
applies a intensity threshold and finds which pixels lie
above the threshold (image on right-hand side of Figure
1). The feature extraction process then finds groups of
interconnected pixels and generates an observation for
each group whose pixel count and dimensions fall within
given bounds. The values of the bounds are manually
tuned based on finding features that are useful for the
current task.

In our case, surveyed 1x1 meter white plastic squares
have been placed in the environment to act as a ‘truth’
from which to test the accuracy of the final SLAM map.
The feature extraction process however also finds other
features in the environment both man-made (e.g. rain
water tanks) and natural (tree stumps, tree branches,
rocks and patches of dirt) that are integrated into the
map. Current work in progress is looking at feature
extraction for more interesting natural features such
as trees, shrubs, lakes and landscape features such as
drainage scars.

3.2 The Inertial SLAM Algorithm
The inertial SLAM algorithm, as shown in [Kim and
Sukkarieh, 2003], is formulated using an Extended
Kalman Filter (EKF) in which feature locations and the
vehicle’s position, velocity and attitude are estimated
using relative observations between the vehicle and each
feature.

Process Model
The estimated state vector x̂(k) contains the three-
dimensional vehicle position (pn), velocity (vn) and Eu-
ler angles (Ψn = [φ, θ, ψ]) and the N feature locations
(mn

i ) in the environment where i = 1, ..., N . The state
estimate x̂(k) is predicted forward in time from x̂(k− 1)
via the process model:

x̂(k) = F(x̂(k − 1), u(k), k) + w(k) (1)



where F(., ., k) is the non-linear state transition func-
tion at time k, u(k) is the system input at time k and
w(k) is uncorrelated, zero-mean vehicle process noise er-
rors of covariance Q. The vehicle process model uses the
six-degree of freedom equations of inertial navigation to
predict the position, velocity and attitude of the vehicle.
An inertial-frame mechanization is used where position,
velocity and attitude are found via: pn(k)
vn(k)
Ψn(k)

 =

 pn(k − 1) + vn(k)∆t
vn(k − 1) + [Cnb (k − 1)f b(k) + gn]∆t

Ψn(k − 1) + Enb (k − 1)ωb(k)∆t


(2)

where f b and ωb are the body-frame referenced vehicle
accelerations and rotation rates which are provided by
inertial sensors on the vehicle and gn is the acceleration
due to gravity. The direction cosine matrix Cnb and ro-
tation rate transformation matrix Enb between the body
and navigation frames are given by:

Cnb =

 cψcθ cψsθsφ − sψcφ cψsθcφ + sψsφ
sψcθ sψsθsφ + cψcφ sψsθcφ − cψsφ
−sθ cθsφ cθcφ

 (3)

Enb =

 1 sφtθ cφtθ
0 cφ −sφ
0 sφsecθ cφsecθ

 (4)

where s(.), c(.) and t(.) represent sin(.), cos(.) and
tan(.) respectively. Feature locations are assumed to be
stationary and thus the process model for the position
of the ith feature is given as:

mn
i (k) = mn

i (k − 1) (5)

where i = 1, ..., N , N is the number of features.

Observation Model
An on-board vision sensor makes relative bearing obser-
vations zi(k) to features within the camera frame. The
observations are related to the estimated states via:

zi(k) = Hi(pn(k),Ψn(k),mn
i (k), k) + v(k) (6)

where Hi(., ., ., k) is a function of the feature location,
vehicle position and Euler angles and v(k) is uncorre-
lated, zero-mean observation noise errors of covariance
R. The observation model is given by:

zi(k) =
[
ϕi
ϑi

]
=

 tan−1
(
ys

xs

)
tan−1

(
zs√

(xs)2+(ys)2

)  (7)

where ϕi and ϑi are the observed azimuth and ele-
vation angles to the feature and xs, ys and zs are the
cartesian co-ordinates of psms, the relative position of the

feature w.r.t the sensor, measured in the sensor frame.
psms is given by:

psms = CsbC
b
n[m

n
i − pn − Cnb p

b
sb] (8)

where Csb is the transformation matrix from the body
frame to sensor frame and pbsb is the sensor offset from
the vehicle centre of mass, measured in the body frame.

A pinhole camera model is used to determine the az-
imuth and elevation angles from the pixel co-ordinates
(u,v) of the feature in the image:

[
ϕ
ϑ

]
=

[
tan−1 (u−u0)

fu

tan−1(tan( (v−v0)
fv

) cosϕ)

]
(9)

where u0,v0,fu and fv are calibration parameters for
the camera which are determined before flight.

Estimation Process

The estimation process is recursive and is broken into
two steps:

Prediction: The vehicle position, velocity and atti-
tude are predicted forward in time using (1) and (2) with
data supplied by the inertial sensors. The state covari-
ance P is propagated forward via:

P(k|k − 1) =∇Fx(k)P(k − 1|k − 1)∇FTx (k)

+∇Fw(k)Q∇FTw(k)
(10)

where ∇Fx and ∇Fw are the jacobians of the state
transition function w.r.t the state vector x̂(k) and the
noise input w(k) respectively.

Update: Assuming that we have already initialised
the three-dimensional position of a feature, the state es-
timate is updated from further observations via:

x̂(k|k) = x̂(k|k − 1) + W(k)ν(k) (11)

where the gain matrix W(k) and innovation ν(k) are
calculated as:

ν(k) = zi(k)−Hi(x̂(k|k − 1)) (12)
W(k) = P(k|k − 1)∇HT

x (k)S−1(k) (13)
S(k) = ∇Hx(k)P(k|k − 1)∇HT

x (k) + R (14)

where ∇Hx(k) is the jacobian of the observation func-
tion w.r.t the predicted state vector x̂(k|k−1). The state
covariance P(k|k) after the observation is updated via:

P(k|k) = P(k|k − 1)−W(k)S(k)WT (k) (15)



3.3 Initialisation of Feature Positions from
Bearing-only Observations

As mentioned in Section 3, a single bearing-only obser-
vation is insufficient to initialise the 3D position of a
feature into the SLAM filter with Gaussian uncertainty.
In the following subsection, we outline a method for de-
layed initialisation of a feature into the filter by using
stored observations and vehicle pose information.

Storing Feature Observations and Vehicle Pose
Information

When an observation of an un-initialised feature is made,
the current bearing-only observation is stored and the
SLAM state vector and covariance matrix are augmented
to include the current vehicle pose (3 position states and
3 Euler angle states):

x̂v =

 pn(k)
vn(k)
Ψn(k)

 , x̂p =
[
pn(k)
Ψn(k)

]
(16)

x̂aug =

 x̂v(k)
mn(k)
x̂p(k)

 (17)

Paug(k) =

 Pvv Pvm Pvp

Pmv Pmm Pmp

Ppv Ppm Ppp

 (18)

where x̂v are the vehicle position, velocity and atti-
tude states, x̂p are the vehicle pose states (position and
attitude) at the time of the observation and x̂aug is the
augmented state vector.

Deciding when to Initialise a Feature

A remaining issue with the delayed initialisation method
is the question of when the initialisation should be made.
In [Bailey, 2003], the author uses the Kullback-Leibler
distance to determine whether to initialise a feature
based on available measurements by comparing result
of the initialisation with a non-gaussian approximation.
This method is very computationally intensive due to the
requirement for a numerical evaluation of the Kullback-
Leibler distance. In our approach it is found that a
heuristic such as setting the minimum angle between
observations necessary to initialise a feature to a con-
servative threshold (in our case 40 degrees) provides a
practical way of deciding when to initialise. In our case
all of the information from observations is recovered at
initialisation and hence the SLAM algorithm can afford
to delay the initialisation (by setting the angular thresh-
old at a conservatively large angle) provided that we con-
tinue to circle around a feature.

Figure 2: Initialising a 3D feature position from two ob-
servations from different vehicle poses: position is calcu-
lated as the closest point between 2 lines of sight in 3D
space.

Initialising a 3D Feature Position Estimate
When two observations for a given un-initialised feature
are separated by an angle greater than 40 degrees, these
two observations are initially used to create an estimate
of the feature position. Each bearing-only observation
can be represented by a 3D point in space yn (at the
origin of the sensor) along with a unit vector ûn pointing
in the direction of the feature at the time of observation,
thus:

yn = pn + Cnb p
b
sb (19)

ûn = Cnb C
b
s p̂
s
ms (20)

where pn and Cnb are determined from the stored pose
data associated to each observation and p̂sms is deter-
mined from the observation data itself via:

p̂sms =

 cos(ϕi) cos(ϑi)
sin(ϕi) cos(ϑi)

sin(ϑi)

 (21)

The initial feature position is computed as the closest
point between the two lines for each observation:

mn
i = G(pn1 , p

n
2 ,Ψ

n
1 ,Ψ

n
2 , z1, z2)

=
1
2
(yn1 + yn2 + p1û

n
1 + p2û

n
2 ) (22)

p1 =
((yn2 − yn1 )× ûn2 ) · (ûn1 × ûn2 )

|ûn1 × ûn2 |2
(23)

p2 =
((yn1 − yn2 )× ûn1 ) · (ûn2 × ûn1 )

|ûn2 × ûn1 |2
(24)

The state vector and covariance matrix in the SLAM
filter are then augmented to include the estimate of the
new feature:

x̂aug(k) =
[

x̂(k)
mn
i (k)

]
(25)



Paug(k) =
[

I 0
∇Gp ∇Gz

] [
P(k) 0

0 R2x2

]
×[

I 0
∇Gp ∇Gz

]T (26)

where ∇Gp and ∇Gz are the jacobians of the
initialization function G(.) w.r.t the pose states
(pn1 , p

n
2 ,Ψ

n
1 ,Ψ

n
2 ) and the observations (z1, z2) respec-

tively and R2x2 is:

R2x2 =
[

R 0
0 R

]
(27)

Recovering the Information from Remaining
Stored Observations
Once two observations have been used to initialise the
3D position of the feature into the filter, the remain-
ing stored observations (z1, z2, ..., zj) are run through a
batch Kalman filter update, in order to recover infor-
mation towards the position of the feature and also the
current vehicle pose states. The update follows similar
steps as in Section 3.2. The innovation ν(k) is:

ν(k) =


z1 −H(pn1 ,Ψ

n
1 ,m

n
i )

z2 −H(pn2 ,Ψ
n
2 ,m

n
i )

...
zj −H(pnj ,Ψ

n
j ,m

n
i )

 (28)

Equations 11 and 13-15 are then used to calculate
the update where ∇Hx is computed w.r.t all of the
stored pose states corresponding to observation data
used. Once the update has been completed, pose states
that no longer have any associated stored observations
are removed from the state vector and their correspond-
ing rows and columns removed from the covariance ma-
trix.

3.4 Data Association
Data association is the process of matching observations
of features from the camera (which are generally pro-
vided as 2D points in the image which are not necessar-
ily distinct from any other point) with the estimated 3D
position of the feature within the map. The aim of this
section is to develop a method of data association that
does not rely on any visual information about a feature
from the image data.

Starting a New Feature
When an observation is made in the image that cannot
be associated to any other previously seen feature, ini-
tialised or un-initialised, a new feature is created using
the observation. The feature is termed an ‘un-initialised
feature’ as we have insufficient information to determine
the 3D position of the feature and integrate the estimate
of it’s position into the 3D feature map. From our single

Figure 3: Data Association Procedure for initialised and
un-initialised Features.

observation we create a set of equally weighted hypothe-
ses for where the feature could lie in 3D space along the
line of sight. The mean (x̂j) and covariance (Pj) for
each hypothesis is calculated for several different values
of range (rj) in equal increments from an expected min-
imum and maximum sensor range by:

x̂j = G(pn(k),Ψn(k), zi(k), rj)
= pn + Cnb p

b
sb + rj(Cnb C

b
sp
s
ms) (29)

Pj = ∇GvPvv∇GT
v +∇GzR∇GT

z (30)

where psms is calculated from the observation data us-
ing Equation 21 and ∇Gv,∇Gz are the jacobians of the
function G(.) w.r.t vehicle states and the observation
and range data respectively.

A record of the multi-hypothesis distribution is main-
tained separately from the state vector and is used only
to assist in data association of un-initialised features.

Data Association Matching Test

The validity of potential associations between observa-
tions and features is assessed using the Mahalanobis dis-
tance (γ) [Neira and Tardos, 2002] in the sensor space
(azimuth and elevation):

γ = νTS−1ν (31)

where the distance is calculated for each possible
matching of observation and feature. Matchings that
fall within a defined threshold of γ corresponding to a
95% level of confidence are considered acceptable.



Matching Observations to Initialised or
Un-initialised Features
At each time observations from the feature extraction
process are received, Equation 31 is used to evaluate the
potential matching between each observation and each
of the 3D initialised features and each of the hypotheses
for each of the un-initialised features. Observations that
match 3D initialised features are associated and sent on
to the SLAM filter to be updated. In the event of multi-
ple features matching a single observation, the matching
with the lowest value of γ will be accepted.

Observations that match with at least one hypothesis
of an un-initialised feature are associated to this feature.
Once an observation is associated to an un-initialised fea-
ture, any hypotheses for this feature that do not match
the observation are removed. The observation itself is
stored and the vehicle pose at the current time is then
added to the state vector (see Section 3.3). In the event
of multiple un-initialised features matching a single ob-
servation, all matchings to this observation are rejected.

The matching process is illustrated is Figure 3.

4 Experimental Setup

The experimental setup comprises of the flight vehicle,
a low-cost IMU, colour vision camera and PC104 com-
puter setup on the aircraft which is currently used to log
data during flight tests (see Figure 4). The flight vehicle
has an autonomous flight control system that follows a
fixed path of orbits around features of interest on the
ground. The current vehicle navigation system uses an
on-board GPS receiver with differential corrections via
a base-station located on the ground to aid the IMU.
The current navigation system results provide a reason-
able approximation to the true position, velocity and
attitude of the vehicle ( 1-2 meter positioning accuracy
and 1-2 degrees orientation accuracy) and will be used
as a comparison to the SLAM navigation system results.
Several 1x1 meter white plastic squares were placed in
the environment to act as artificial features. The posi-
tion of each white square was surveyed using differential
GPS and is used to compare the accuracy of the SLAM
map.

5 Results

The following results were generated by using logged vi-
sion and IMU data to drive the SLAM algorithms. Fig-
ure 5 shows four captured vision frames with observa-
tions, the projected positions of 3D initialised features
and multiple hypotheses of un-initialised features over-
laid on the image. As features are seen for the first time,
an array of hypotheses represented by the green ellipses
is projected into the image. Further observations of the
feature begin to cull unmatched hypotheses before fi-
nally the angular threshold for different observations of

(a)

(b)

Figure 4: (a) The Brumby MkIII UAV, weighing 40kg
with a wing span of 2.8 meters, capable of carrying a
payload of 13.5 kg and flying at 100kts (b) Sideways
mounted colour camera and PC104 computer stack

a feature is reached and the 3D position of the feature is
initialised into the map and SLAM filter.

The trajectory of the vehicle and the position of point
features in the map is shown in Figure 6 with results from
both the GPS-aided INS solution and the un-aided INS
shown for comparison. The blue numbered points on the
map represent the estimated position of features in the
environment from the SLAM filter and the red points in-
dicate the surveyed position of the artificial white plastic
targets. Only a handful of the estimated map features
correspond to white targets where the other features are
collections of tree stumps, rocks, bright patches of dirt
and a rain water tank. Although the mapped features
may be of little interest to a human wishing to build
a picture of the environment, these features can be re-
peatedly extracted from the vision data and associated
by the SLAM algorithm and thus their usefulness for
navigation purposes.

Plots of the position and attitude of the vehicle from



Figure 5: Four captured vision frames with observations
(blue), the projected positions of 3D initialised features
(red) and multiple hypotheses of un-initialised features
(green) overlaid on the image.

the SLAM solution are shown in Figures 7 and 8. The
estimates of the vehicle Euler angles show little deviation
from the GPS-aided results (within about 1-2 degrees),
however the SLAM position solution deviates as much
as 15 meters in vertical positioning and as much as 30
meters in horizontal positioning.

6 Conclusions and Future Work

This paper has demonstrated an implementation of
vision-aided, bearing-only SLAM on an aerial vehicle us-
ing data logged during a flight test. Bearing-only initial-
isation of features in the map has been tackled using a
delayed, batch Kalman filter update using stored obser-
vation and vehicle pose data. A method for data associ-
ation that does not rely on visual properties of features
from the image data has been shown. It has been shown
that the SLAM algorithm can constrain the errors in
the inertial navigation system while operating without
GPS in an unstructured environment without the need
for range observations. The algorithm builds a 3D point
feature map of the environment consisting of both man-
made artificial features and natural features.

Current work in progress is looking at integrating more
sophisticated feature extraction algorithms for finding
more interesting natural features such as trees, shrubs,
lakes and landscape features such as drainage scars. Fu-
ture work will examine methods for further improving

Figure 6: Vehicle trajectory from SLAM results (blue)
and INS-GPS system (red) and un-aided INS (green),
SLAM mapped features (blue points) and surveyed white
plastic target locations (red points).

the consistency of the SLAM algorithms for operation
over large scale areas.
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