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Abstract

This paper presents a novel approach to plan
the optimal joint trajectory for a manipula-
tor robot performing constrained motion tasks.
In general, a two-step scheme will be deployed
to find the optimal robot joint curve. Firstly,
instead of solving a nonlinear, implicit Euler-
Lagrange equation, we discretize the corre-
sponding cost function and use Newton’s itera-
tions to numerically calculate the joint trajec-
tory’s intermediate discrete points. Secondly,
we interpolate these points to get the final joint
trajectory in a way such that the motion con-
straint will always be sustained throughout the
movement. An example of motion planning for
a 4-degree-of-freedom robot WAM will be given
at the end of this paper.

1 Introduction

Generally speaking, the task for a motion planner is to
specify a motion to be executed by the actuator. A
proper motion plan can have advantages with respect to
different aspects, for example, obstacle avoidance, work
efficiency optimization, better tracking performance etc.
For multi-link robotic systems, the automatic task ex-
ecution can be divided into three smaller subproblems
[Singh and Leu, 1991]:

P1 For a given robot and task, plan a path for the
end-effector between two specified positions. Such
a path optimizes a performance index, in the mean-
time satisfies either equality (for instance, robot’s
end-tip is required to move on a surface) or in-
equality (for instance, obstacle avoidance, joint an-
gle limit) constraints.
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P2 For a given end-effector path expressed in the
task (operational) space (usually coincides with the
Cartesian space), find the joint trajectory according
to our knowledge about the robot kinematics (and
dynamics when necessary). Similarly, some perfor-
mance index can be optimized in case of a redundant
robot, namely, the robot has more degrees of free-
dom (DOFs) than necessary to perform the given
task.

P3 Design a feedback controller which can track the
given reference joint trajectory accurately.

P1 and P2 are often resolved separately in robot path
planning researches. Especially for P1, to design a
collision-free path for a single rigid object (free-flying
object) travelling in a crowded environment is a widely
researched topic. Latombe’s work collects most of such
algorithms [Latombe, 1991].

Solving subproblem P2 usually involves the usage of
the mathematical relationship between Cartesian and
joint coordinates, i.e., the Jacobian. For a redundant
robot, the extra DOFs can be utilized to achieve some
optimizations besides fulfilling the basic task of end-
effector path tracking. Yoshikawa proposed a formula-
tion of joint velocity using the pseudo-inverse of the Ja-
cobian for optimizing a local cost function [Yoshikawa,
1990]. For finding a global optimal trajectory, varia-
tional calculus is commonly used. The predefined end-
effector path is considered as a constraint to the op-
timization procedure, i.e., pd(t)−κ(q(t)) = 0, where
pd(t) is the desired end-effector path, q(t) is the joint
trajectory to be calculated, and κ denotes the forward
kinematic position map. Then by eliminating the La-
grange multiplier, a differential equation in the joint
variables can be derived. The joint trajectory are com-
puted by numerically solving the differential equation
with boundary conditions [Martin et al., 1989] [Agrawal
and Xu, 1994].

More recent work prefers combining the path and tra-
jectory planning (P1 and P2) and takes the dynamics
model into consideration, so the robot path planning can



be interpreted as an optimal control problem. This ap-
proach automatically eliminates the necessity of calculat-
ing the feasible configuration space for the manipulator
which is not a trivial problem for a high-DOF robot arm
subject to joint limits. Also, by using such path plan-
ning strategy, it’s easy to formulate some dynamic op-
timization criterions, e.g., minimum execution time, or
incorporate some dynamic constraints, e.g., drive torque
limit. In the optimization process, the time history of
joint drive torque (or joint position, joint velocity) is
usually approximately represented by a limited num-
ber of parameters (for example, discretized points, B-
spline etc.), so that nonlinear programming or sequential
quadratic programming technique can further be used to
find the optimal solution [Singh and Leu, 1991], [Wang
and Hamam, 1992], [Wang et al., 2001], [Lo Bianco and
Piazzi, 2002].

However, the above path planner usually requires cal-
culating the derivative of robot inverse dynamics, which
will be quite complicated and time-consuming for a high-
DOF robot. Moreover, besides the multi-rigid-body
model, other factors which are either difficult to model
(e.g., motor torque ripple) or not a smooth function (e.g.,
Coulomb friction) also account for a considerable propor-
tion of the robot dynamics. Thus it’s not so meaningful
to compute an ”optimal” time history of control input
and expect such open-loop control law will end up with
optimal performance on the real robotic system.

This paper studies the optimization of the robot path
in joint space (solving P1 and P2 at the same time) with
regard to some geometric performance index for both
robot’s joint and end-effector. Furthermore, the optimal
joint trajectory is subject to some motion constraint with
respect to the end-effector. Because of the synthetical
optimality and the motion constraint, the cost function
incorporates the robot kinematics and the geometry of
environment, for which fairly accurate models are possi-
ble to obtain. Dynamic constraints such as limit of joint
velocity or drive torque can possibly be treated by using
proper time scaling techniques (e.g., dynamic trajectory
scaling [Sciavicco and Siciliano, 1996]) afterwards. The
rest of this paper is organized as follows: Section 2 gives
the mathematical formulation of our optimal robot path
planning problem; Section 3 presents a two-step calcula-
tion scheme which computes the optimal joint trajectory;
Section 4 shows an example of applying our algorithm
for planning the motion for a 4-DOF robot WAM with
its end-effector is constrained to move on a sphere.

2 Problem Description

Firstly, we are considering the situation that the robot
is subject to some holonomic motion constraint

C(q(t)) = 0 (1)

where q : R→ Rp is the joint position curve.
For example, if the manipulator’s end-effector is re-

quired to move on a 2D plane in R3 (Fig. 1), the corre-
sponding motion constraint can be expressed as:
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x

Figure 1: Robot’s end-effector is required to move on a
2D-plane

C(q(t)) = κ(q(t))T n

= p(t)T n (2)

where p ∈ R3 is the position of the end-effector, n ∈
R3 is the plane normal, κ is robot forward kinematic
position map.

Now define the optimization problem as:

P4 Over the set of sufficiently smooth curves subject to
motion constraint and boundary conditions:

∀t ∈ [t0, tn], C(q(t)) = 0
q(t0) = q0, q(tn) = qn

(3)

Find a joint trajectory q : [t0, tn] → Rp, which min-
imizes the cost function F

F (q(t), q̇(t)) =
∫ tn

t0

f
(
q(t), q̇(t)

)
dt (4)

where f : [t0, tn] → R is the Lagrangian.
By introducing the Lagrange multiplier function µ :

[t0, tn] → R, the original optimization problem P4 is
equivalent to:

P5 Find smooth curves q(t) and µ(t), so that the fol-
lowing function F̃ is stationary (minimal).

F̃ (q, q̇, µ) =
∫ tn

t0

(
f(q, q̇)+ µC(q)

)
dt (5)



Using variational calculus, we know that the optimal
joint curve for the above path planning problem satisfies
an Euler-Lagrange equation

∂f

∂q
− d

dt

∂f

∂q̇
+µ

dC

dq
= 0

C(q(t)) = 0
(6)

Ideally, we can try to solve for q(t) from Eq. 6 by
eliminating the Lagrange multiplier µ(t). However, the
cost function may incorporate the nonlinear robot kine-
matics model as the example in Section 4, so that the
differential equation for q(t) will become implicit. In
the next section, we will discuss an alternative approach
which first computes the intermediate points and then
interpolate them to form the final curve of q(t).

3 Solution

To accomplish a path optimization numerically, the
usual approach is to approximately represent the result-
ing curve by a finite number of parameters. In this paper,
we use the curve’s discrete positions only, from which
reasonable approximations of velocity and acceleration
can be obtained as long as the original curve doesn’t
contain too much high-frequency oscillation. Optimiza-
tion is considered in calculating the intermediate discrete
points, which can be shown to converge to the result of
Euler-Lagrange equation. Later, these points will be in-
terpolate by a smooth curve as a suboptimal solution for
the problem P4.

3.1 Discretization Scheme

Consider discretizing the time interval [t0, tn] by a regu-
lar partition

tk = kh , k ∈ {0, 1, · · · , n− 1, n} (7)

where h = (tn − t0)/n is the step size.
Let

qk := q(tk) , k ∈ {0, 1, · · · , n− 1, n} (8)

Given the boundary values q0 and qn, we wish to com-
pute the set of the intermediate points {q1 · · ·qn−1}.

Similarly, define

µk := µ(tk) , k ∈ {0, 1, · · · , n− 1, n} (9)

3.2 Integration and Approximation
Scheme

Consider the following integration scheme for F̃ defined
by Eq. 5:

F̃ (q, q̇, µ) '
n−1∑

k=0

f(q(τk), q̇(τk))h + (10)

µ0C(q0)
h

2
+

n−1∑

k=1

µkC(qk)h +µnC(qn)
h

2

where

τk := kh +
h

2
, k ∈ {0, 1, · · · , n− 1} (11)

Furthermore, q(τk) and q̇(τk) can be approximated as:

q(τk) ' qk +qk+1

2
(12)

q̇(τk) ' qk+1−qk

h
(13)

By combining Eqs. 10, 12, 13, we approximate F̃ as
a function of the discretized joint position qk and La-
grange multiplier µk. The variational problem P5 is now
converted into a finite-dimensional optimization problem
P6:

P6 Find a vector Q ∈ Rs, s = (n− 1)(p + 1)

Q =
[
q1,1 , · · · , qn−1,p , µ1 , · · · , µn−1

]T

(14)

where qk,j is the jth element of qk.
which minimizes the function F̃ ′

F̃ ′(Q) =
n−1∑

k=0

f(
qk +qk+1

2
,
qk+1−qk

h
) +

n−1∑

k=1

µkC(qk) (15)

To solve P6, we will apply Newton’s method to itera-
tively calculate Q.

A1 (Newton iteration)

1. Pick a reasonable guess of Q.
2. Update Q by the following law:

Qi+1 = Qi−H−1(Qi)∇F̃ ′(Qi) (16)

where Qi is the ith iterate of Q, ∇F̃ ′ is the
gradient of F̃ ′ with respect to Q, and H is the
matrix of its 2nd derivative (Hessian).
Apply step 2 until the norm of ∇F̃ ′ gets small
enough.

The integration/approximation scheme used above
preserves the characteristics of the original optimization
system. Levin et al. proved that the solution of the
discretized system will converge to the solution of Euler-
Lagrange equation as h goes to 0 [Levin et al., 2002].
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Figure 2: WAM moves its end-effector on a sphere

3.3 Interpolation
Having computed the intermediate points, the next step
is to find out the joint trajectory q(t) such that

q(tk) = qk (17)
∀t ∈ [t0, tn], C(q(t)) = 0 (18)

To ensure the resulting joint curve satisfies both two
conditions (Eqs. 17, 18), we design a 3-step calculation
scheme (algorithm A2) as follows:

A2 1. Interpolate the boundary and computed inter-
mediate points q0,q1 · · ·qn−1,qn by a cubic
spline. We call the interpolating curve qorg(t).

2. Interpolate pk = κ(qk) by a curve p(t) on the
working surface. A pull back/push forward
technique with rolling and wrapping for smooth
interpolating curves on a manifold was pro-
posed recently [Hüper and Silva Leite, 2002].
This can be used to compute p(t).

3. Adjust the joint trajectory qorg(t) to fit the
end-effector path p(t) by repeatedly apply-
ing the following law (initially, set qold(t) =
qorg(t))

qnew(t) = qold(t) + (19)
J †v (qold(t))

(
p(t)− κ(qold(t))

)

where Jv is the 3× p matrix mapping joint ve-
locity to end-effector’s linear velocity, and J †v
is its pseudo inverse.

Using the pseudo-inverse of the Jacobian will fine-tune
the robot pose to make the end-effector position get
closer to the desired path p(t) with minimum change
of joint position (4q(t) = qnew(t) − qold(t)). Here we
assume we’ve already have enough intermediate points,
so that p(t) and κ(qorg(t)) will be sufficiently close to
each other.

4 Example

WAM is a 4-joint robot manipulator with human-like
kinematics (see Fig. 3). Now suppose the robot is re-
quired to move its end-effector on some working surface,
for instance, a sphere (see Fig. 2). Viewed in Cartesian
space, WAM’s 4-DOF corresponds to its end-effector
moving to arbitrary 3D position and rotating about vec-
tor p in Fig. 2 (1-DOF in orientation).

Figure 3: 4-DOF robot WAM

Given the initial and final joint positions (which can
be arbitrary as long as the motion constraint is satisfied)
and assuming the whole sphere surface is within WAM’s
workspace, now the task is to find an optimal joint tra-
jectory yielding a comprehensive optimality with respect
to the following three aspects.

1. The last link should be kept perpendicular to the
sphere as much as possible (i.e., θ → min). Perpen-
dicularity will have advantages in many situations,
e.g., spray coating, force sensing etc.

2. The end-effector traverses minimum distance.

3. The joints traverse minimum distance.



The overall cost function of the variational problem
can be given as:

F(q, q̇) =
∫ 1

0

( oT (r+p)
‖oT (r+p)‖ + α(ṗT ṗ)+ β(q̇T q̇)

)
dt

(20)
s.t. ‖r+p(t)‖ = R, q(0) = q0, q(1) = qn

where o(q(t)) ∈ R3 represents the orientation of
WAM’s last link, p(q(t)) and ṗ(q(t), q̇(t)) ∈ R3 are re-
spectively its end-effector’s position and linear velocity,
they are both calculated through WAM’s forward kine-
matics model. α and β are weights of the second and
third term. r is the vector from the center of sphere
to the base of WAM, R is the radius of the sphere, and
‖x‖ =

√
xT x. Vectors o, p and r are as Fig. 2 illustrates.

Figs. 4 − 7 show the output of step 1. Here we com-
pare the optimal result for three choices of α and β in
the cost function (Eq. 20):

1. α = 0.5, β = 0
consider orientation, end-effector path, but not joint
trajectory.

2. α = 0, β = 0.003
consider orientation, joint trajectory, but not end-
effector path.

3. α = 0.5, β = 0.003
consider orientation, end-effector path, and joint
trajectory.
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Figure 4: Calculated points of the 1st joint’s trajectory
Blue: α = 0.5, β = 0; Red: α = 0, β = 0.003; Green:

α = 0.5, β = 0.003

As we can see in Figs. 8, 9, 10, all end-effector points
(which are computed from the joint points by forward
kinematics) are located on the sphere, and they tend
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Figure 5: Calculated points of the 2nd joint’s trajectory
Blue: α = 0.5, β = 0; Red: α = 0, β = 0.003; Green:

α = 0.5, β = 0.003

to move close to the black line which indicates the only
place that WAM’s last link is possible to be perpendic-
ular to the surface. The ’incomplete’ optimization cri-
terion in case 1 and 2 give rise to some ’abrupt hop’
for either joint trajectory (Figs. 4blue, 5blue, 6blue) or
end-effector path (Fig. 9).
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Figure 6: Calculated points of the 3rd joint’s trajectory
Blue: α = 0.5, β = 0; Red: α = 0, β = 0.003; Green:

α = 0.5, β = 0.003

Figs. 11, 12, 13 show the interpolating curve for the
result in Figs. 4green, 5green, 6green, 10. By using the
algorithm A2 described in Section 3.3, we can see the fi-
nal joint trajectory satisfies the requirements Eqs. 17, 18,
also both the end-effector path and joint trajectory are
smooth.
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Figure 7: Calculated points of the 4th joint’s trajectory
Blue: α = 0.5, β = 0; Red: α = 0, β = 0.003; Green:

α = 0.5, β = 0.003

5 Conclusion

This paper presents a method to calculate the optimal
joint trajectories for manipulator robot performing con-
strained motion task. The path planning are completed
in two stages: 1) convert the variational calculus prob-
lem into a finite dimensional optimization problem, use
Newton’s method to compute the joint trajectory’s inter-
mediate points; 2) interpolate these points to form the
joint curve and adjust it to ensure the motion constraint
will be satisfied throughout the entire trajectory.

A Java 3D visualization demo is also submitted with
this paper and a motion control experiment on WAM
executing the above computed joint trajectory is under
consideration.
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Smooth Interpolating Curves with Applications to
Path Planning. In Proceedings of the 10th Mediter-
ranean Conference on Control and Automation, Lis-
bon, Portugal, July 2002.

[Latombe, 1991] J.-C. Latombe. Robot Motion Plan-
ning. Klumer, Boston, 1991.

[Levin et al., 2002] Y. Levin, M. Nediak, A. Ben-Israel.
A Direct Newton Method for Calculus of Variations.
Journal of Computational and Applied Mathematics,
139(2): 197-213 Feb 15 2002.

[Lo Bianco and Piazzi, 2002] C.G. Lo Bianco, A. Piazzi.
Minimum-Time Trajectory Planning of Mechanical
Manipulators under Dynamic Constraints. Interna-
tional Journal of Control, 75(13): 967-980 Sep 2002.

[Martin et al., 1989] D.P. Martin, J. Baillieul, J.M.
Hollerbach. Resolution of Kinematic Redundancy Us-
ing Optimization Techniques. IEEE Transactions on
Robotics and Automation, 5(4): 529-533 Aug 1989.

[Murray et al., 1994] R.M. Murray, Z.X. Li, S.S. Sas-
try. A Mathematical Introduction to Robotic Manipu-
lation. CRC Press, 1994.

[Sciavicco and Siciliano, 1996] L. Sciavicco and B. Sicil-
iano Modeling and Control of Robot Manipulators.
McGraw-Hill, 1996.

[Singh and Leu, 1991] S.K. Singh, M.C. Leu. Manipu-
lator Motion Planning in the Presence of Obstacles
and Dynamic Constraints. International Journal of
Robotics Research, 10(2): 171-187 Apr 1991.

[Wang et al., 2001] C-Y.E. Wang, W.K. Timoszyk, J.E.
Bobrow. Payload Maximization for Open Chained
Manipulators: Finding Weightlifting Motions for a
Puma 762 Robot. IEEE Transactions on Robotics and
Automation, 17(2): 218-224 Apr 2001.

[Wang and Hamam, 1992] D. Wang, Y. Hamam. Opti-
mal Trajectory Planning of Manipulators with Colli-
sion Detection and Avoidance. International Journal
of Robotics Research, 11(5): 460-468 Oct 1992.

[Yoshikawa, 1990] T. Yoshikawa. Foundations of
Robotics: Analysis and Control. MIT Press, Cam-
bridge, Massachusetts, 1990.



Figure 8: Intermediate points of end-effector path when α = 0.5, β = 0.
Black: sphere normal; Red: WAM’s last link.

Figure 9: Intermediate points of end-effector path when α = 0, β = 0.003.
Black: sphere normal; Red: WAM’s last link.

Figure 10: Intermediate points of end-effector path when α = 0.5, β = 0.003.
Black: sphere normal; Red: WAM’s last link.
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Figure 11: Interpolating joint trajectory, a) joint 1, b) joint 2
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Figure 12: Interpolating joint trajectory, a) joint 3, b) joint 4

Figure 13: End-effector path calculated from joint trajectory in Figs. 11, 12


