
Graphical Simulation and Visualisation Tool for a Distributed Robot Programming

Environment

Félix-Étienne Trépanier and Bruce A. MacDonald

Department of Electrical and Electronic Engineering

University of Auckland, Private Bag 92019, Auckland, New Zealand

b.macdonald at auckland.ac.nz

Abstract

The Robotics Research Group of the University
of Auckland is developing a robot programming
environment using a Service Based Architec-
ture [Woo, 2002; Woo et al., 2003] to facilitate
the description of robot behaviours. Simula-
tion and visualisation tools allow programmers
to test their robot behaviours at early stages
and such tools are an important addition to
any programming environment. This paper de-
scribes the development of a Graphical Simu-
lation and Visualisation (GSV) Tool. Robotic
applications can automatically test a specific
robot algorithm using the CORBA Service of-
fered by the GSV Tool. A GUI enables a human
user to visualise the performance of the robot
in a specific virtual environment.

1 Introduction

Robot programmers need to be able to visualise and
test their robot behaviours on different robots operating
in different environments at every development stage.
Many simulation and visualisation tools have been de-
veloped for robotics development. Some are specific to
the robot [Kimoto and Yuta, 1992; Kuffner et al., 2000],
although they lack the generality needed for broader ex-
perimentation. The current trend is to build general
robot simulation and visualisation tools that can be used
to test many types of robots operating in different envi-
ronments. Chen et al. [1994] present an elaborate simu-
lation tool with sensor emulation for a robot controlled
by Action Scripts. 3d7 [Trieb and von Puttkamer, 1994]

aims to simulate different configurations for autonomous
mobile robots. At CMU, the Institute for Complex En-
gineered Systems has built a simulator integrated with
a software framework to assist multiple mobile robot
collaboration research [Dixon et al., 1999]. Jim Wang
from the University of California at Riverside presents
in [Wang, 1997] a generic simulation platform for dis-
tributed robotic system experiments.

At the University of Auckland, the Robotics Re-
search Group has developed a Service Based Architec-
ture (SBA) [Woo, 2002; Woo et al., 2003]. This soft-
ware infrastructure defines robotic software as a collec-
tion of software components advertised on the network
as CORBA service offers. This architecture is the back-
bone for the development of our distributed robot pro-
gramming environment. Existing visualisation tools are
not suitable for integration within a service oriented pro-
gramming environment because they don’t comply with
the two main design principles of the Service Based Ar-
chitecture: distributed software development and soft-
ware reuse. Since the group currently investigates robot
navigation and localisation tasks with different types of
sensors, the tool must be able to emulate those sensors.

This paper presents the details of the GSV Tool
Project. The second section presents the development
methodology. Then, sections 3 to 6 present the four
workflows: requirements, analysis and design, implemen-
tation, testing. Finally, section 7 presents an objective
evaluation of the tool.

2 Methodology

The development of the GSV Tool implies software en-
gineering. Since the tool is to be integrated in the robot
programming environment, the design must be general
enough to support many types of robotic applications.
For these reasons, a software methodology, the Ratio-
nal Unified Process (RUP), has been used. Since RUP
targets mostly business and team software development,
it has been simplified to suit a single developer in a re-
search context, while still allowing future development
by the group. The complete description of the method-
ology used for the realisation of the GSV Tool can be
found in [Trépanier, 2003].

3 Requirements

Figure 1 shows how a GSV Tool can be deployed in the
Service Based Architecture. The tool must be accessible



to both human users (via a GUI) and robotic applica-
tions (via a simulation service). The program that con-
trols a simulated robot is contained in a robot behaviour
program. This program publishes an agent behaviour
service so that the GSV Tool can control the execution
of the robot behaviour. The GSV Tool also provides
hardware emulators for the behaviour to interact with
the simulated world as if it were operating in the real
world. All the service offers are managed by a service
broker application, the Trading Service application in
the CORBA specifications.

The development of the GSV Tool requires the de-
velopment of two service definitions: Agent Behaviour
Service and Simulation Service. The requirements of the
GSV Tool Project come from a use-case analysis. In
total, 34 use-cases and 46 requirements have been de-
scribed. This section briefly presents the key require-
ments of the two services and of the GSV Tool.

3.1 Agent Behaviour Service
Requirements

The Agent Behaviour Service system is a CORBA Ser-
vice definition for agent behaviours. This system allows
applications to access robot behaviour programs. In this
specific project, the GSV tool must be able to initialise
an agent behaviour using this service [RQ1] and start,
stop, pause and resume the behaviour [RQ2]. It is im-
portant to mention that the Agent Behaviour Service
does not implement those requirements, but it provides
an IDL interface definition for the agent behaviour im-
plementations to support those functionalities.

3.2 Simulation Service Requirements

The Simulation Service system is a CORBA Service def-
inition for simulation tools. This system provides access
to the GSV Tool as a distributed software service. It al-
lows the creation of a new simulation [RQ3]. This func-
tionality involves loading an environment, setting the
simulation parameters and adding robots by specifying
their model and agent behaviour. It also allows a robotic
application to start and stop a simulation [RQ4]. More-
over, the Simulation Service system allows the robot be-
haviour to interact with the virtual environment by giv-
ing each agent the ability to act and sense within the
simulated world [RQ5]. Again, the Simulation Service
does not implement RQ3 to RQ5, but it provides the
IDL interface definitions for the GSV Tool to support
and publish those functionalities.

3.3 GSV Tool Requirements

The GSV Tool system consists of a software application
that performs graphical simulations of virtual robots in
virtual environments. This system implements the Sim-
ulation Service and uses the Agent Behaviour Service of-
fers to control simulated robots. The tool must provide

the simulation management and the graphical display
of the evolving virtual world. The simulation tool can
be started in server mode [RQ6]. This means that the
GSV Tool registers itself to the service broker as a simu-
lation service offer and waits for robotic applications to
create a simulation. Otherwise, the GSV Tool is started
as an application. Then, a user can create a simulation
by loading the environment, setting the simulation pa-
rameters, importing the model for the robot and possibly
importing an avatar model [RQ7]. When the simulation
has been created, the simulation user can start, pause,
resume and stop the simulation at any time [RQ8]. The
user can also save the simulation so it can be replayed at
a later time [RQ9]. If a simulation is already running on
another GSV Tool, a simulation user can view the sim-
ulation by connecting to this other instance of the GSV
Tool [RQ10]. The simulation must be in 3D so it looks
realistic and allows more complex sensors such as cam-
eras to be modelled [RQ11]. The GSV Tool implements
the Simulation Service interface [RQ12].

4 Analysis and Design

A key specification for this project is to have real-time
3D graphics capabilities [RQ11]. One option is to create
a real-time 3D engine by using graphics libraries such as
OpenGL or OpenInventor. However, reusing a game en-
gine that already supports real-time 3D graphics is a very
appealing idea that could save a significant amount of
development time. After some analysis on game engines
available at low cost: Torque, Quake and Unreal Tour-
nament, Torque [Garage Games] emerges as the best op-
tion. Even if it is not the most advanced engine, it has
been chosen for the following reasons:

• The Torque Game Engine from Garage Games is al-
ready being used in the Architecture Department of
the University of Auckland for real-time multi-user
critique of architectural designs. Thus, the univer-
sity already possesses the engine.

• It is the only option that provides the full source
code with the engine. This gives more flexibility as
it is possible to modify the game engine itself.

• It has been successfully used for 2 years within the
university for projects such as the architecture de-
sign critique tool. There is expertise with this spe-
cific game engine within the Departments of Archi-
tecture, EEE, and Computer Science.

• Torque comes with a scripting language that can be
used to slightly alter the game or to easily create
GUIs.

Since Torque supports multi-player games, game
recording and real-time 3D graphics, RQ8, RQ9 and
RQ10 are met.

2



Simulation ServiceAgent Behaviour Service

All distributed interactions
go through the Service Broker

Simulation Users
employ the GUI to
manage and view
simulations

A Robot Behaviour
Program can control both
a real or a virtual robot

Service Broker

Real Robot

Virtual
Robot

control

Robotic Application (Test System)
GSV ToolRobot Behaviour Service

Figure 1: A GSV Tool in the Service Based Architecture. A robot application under test may control the simulation,
and may use the agent behaviour service to determine robot behaviours. A real robot may also use the robot behaviour
service. Where a user controls the simulation and visualisation, the GSV tool may use the robot behaviour service
to determine robot actions. All distributed communications occur via the service broker (links not shown).

3



4.1 Agent Behaviour Service Design

The Agent Behaviour Service consists of one interface.
This interface has a init, start, stop, pause and resume
method to fulfil requirements RQ1 and RQ2.

4.2 Simulation Service Design

The Simulation Service has one main interface that al-
lows a robotic application to manage a simulation. Since
it must also allows Agent Behaviours to sense and act
within a simulation using emulated sensors and actua-
tors, it has interfaces that allow the creation of sensors
and actuators (see figure 2). These interfaces fulfil RQ3,
RQ4 and RQ5.

4.3 GSV Tool Design

Figure 3 shows the simulation management design for
the GSV Tool. Since the game engine already supports
environment management, only a few classes are needed.
The Simulation class is responsible for keeping the infor-
mation about the current simulation such as the name,
the duration, the current time and the list of robots in
the simulation. It also responds to the user GUI com-
mands to create and manage a simulation (RQ7 and
RQ8). Each robot entity (3D representation) in the sim-
ulation is managed by the AgentConnection class which
derives from the Torque GameConnection class used for
players. Since the GameConnection class implements
most of the logic needed to control an entity in the sim-
ulation, the AgentConnection has only to manage the
robot’s movements. The behaviour of the robot is con-
trolled via the Agent class. This class contains the agent
name and, most importantly, a reference to the agent
behaviour that controls the robot.

The class diagram also shows the simulation service
implementation. The CorbaManager class has been de-
signed to handle all the interactions with the Service
Broker. Thus, this class is responsible to request the
available Agent Behaviour Service offers from the Ser-
vice Broker and to publish the GSV Tool as a Simulation
Service offer on the network (RQ6). The CorbaManager
class also implements the Simulation interface from the
Simulation Service (RQ12). So all the requests to the
Simulation interface are in fact received by the Corba-
Manager object which, in turn, forwards them to the
Simulation class.

To provide access to emulators, three classes have been
added to the design. The HardwareEmulator class pro-
vides access to both the ActuatorProxy and the Sensor-
Factory which implement interfaces from the Simulation
Service.

At this development stage, each robot can only use one
high-level actuator to move. Thus, the ActuatorProxy
class is used by the simulated robots to move within the
virtual world. On the other hand, a single robot may

need many instances of one type of sensor. Therefore,
the SensorFactory is used to create a sensor emulator for
each sensor the robot behaviour requires.

5 Implementation

The design model has been constructed with the Ratio-
nal Rose C++ tool. The forward engineering function-
ality of the tool has been used to generate both the IDL
and C++ class definitions presented in the previous sec-
tion.

Figure 4 shows the relations between the GSV Tool
and the Torque Game Engine framework. Briefly, the
Torque Game engine framework consists of three subsys-
tems. The Environment subsystem manages the state of
the simulated world. Thus, each object in the virtual
world is represented in the environment. This subsys-
tem updates the world state and provides the scene for
the Graphics subsystem. The user’s display is produced
by the Graphics subsystem which converts the world in-
ternal representation into a 3D graphical representation.
The avatars (players) are controlled by the Player Man-
agement subsystem. This subsystem receives informa-
tion from the user GUI, updates the state of the player
object which in turn affects the environment. These
three subsystems have not been modified. They provide
the powerful Torque framework.

The implementation of the GSV Tool has been roughly
divided into five subsystems. First, the GUI for the sim-
ulation user has been built using the Torque GUI editor.
Then, the Simulation Management subsystem has been
developed to provide the logic behind the user interface.
Once the basic simulation management functionalities
have been added, the robot management, a simple ex-
tension to Torque player management, has been imple-
mented. Since the GSV Tool can also be used by robotic
applications distributed on the network, the Simulation
Service Implementation has been completed. Finally, to
simulate the robots, the actuator and sensor emulators
have been created.

The ActuatorProxy reuses the Torque movement
mechanism to move robots. The positioning system sen-
sor returns simply the global coordinates of the robot
in the virtual world. The current implementation of the
sonar sensor involves a simple ray cast from the sensor
position up to the sensor maximum range using a built-
in Torque function. If an object is hit, the distance is
computed and returned only if it is greater than the min-
imum range, otherwise the maximum range is returned.
Figure 5 shows a B21r robot using its sonar sensors in a
simulation.

For the camera sensor, the scene is rendered from the
robot point of view in a auxiliary OpenGL buffer that
is not to be displayed. This buffer is then copied and
sent to the requesting Agent Behaviour. Currently, the

4



SensorFactoryIntf


createSonar()

createPositioningSys()
...

createCamera()


<<Interface>>


ActuatorProxyIntf


move()

rotate()

stop()


<<Interface>>


CameraIntf


grabFrame()

rotate()


<<Interface>>


PositioningSystemIntf


getX()

getY()

getZ()


<<Interface>>


SonarSensorIntf


sense()


<<Interface>>


SimulationIntf


start()

stop()

loadEnvironment()

addRobot()

create()

setParameters()


<<Interface>>


HardwareEmulatorIntf


getSensorFactory()

getActuatorProxy()


<<Interface>>


<<provides>>
 <<provides>>
<<provides>>


<<provides>>
 <<provides>>


Figure 2: Simulation Service interfaces

AgentBehaviorIntf

<<Interface>>


Agent


AgentConnection


GameConnection


SensorFactoryIntf

<<Interface>>


ActuatorProxyIntf

<<Interface>>


SensorFactory


HardwareEmulator


ActuatorProxy


HardwareEmulatorIntf

<<Interface>>


SimulationIntf

<<Interface>>


Simulation
CorbaManager


Figure 3: Simulation management class diagram

5



Graphics

Environment

GUI

Simulation
Management

Player
Management

Robot
Management

Simulation
Service

Implementation

Sensor/Actuator
Emulators

produce

generate

affect

use

control

provide

control

control

query

affect

Torque Framework

affect

include

GSV Tool

Figure 4: GSV Tool implementation and its relation with the Torque framework

Figure 5: The B21r using its sonar sensors (each red line
indicates a sonar reading length) and its camera (the
black box on top of the robot) in a simulation

Figure 6: A picture taken by the B21r using its camera
in a simulation

picture data is in the 8 bit RGB format. Figure 6 shows
a picture taken by a robot.

Since each sensor is contained in one class and accessed
through an interface, the implementation of the sensors
can be easily changed without having any impact on the
logic of the robot behaviours using them. New sensor
can also be added by defining new interfaces and then
creating the implementation in the GSV Tool.

6 Test

As noted before, the requirements come from both a use-
case analysis and a non-functional requirement analysis.

6



The test phase of the methodology consists of creating at
least one test case for each use-case and non-functional
requirement. The complete test suite of 63 test cases is
given in [Trépanier, 2003]. Torque profiler, the ORBa-
cus Trader Administration Tool, a Test Agent Behaviour
and a Test Robotic Application have been used to per-
form and validate the test cases. The test phase dis-
covered 4 defects. Three of them have been fixed. The
fourth defect is considered acceptable as the failure does
not compromise the quality of the system. The program-
mer had to add some logic to the main program loop in
order to add a camera sensor emulator, which breaks a
non-functional requirement about the ease of extending
the design. It is not considered serious.

7 Evaluation

Once the GSV Tool and the two services had been com-
pleted, an evaluation was conducted. The total number
of lines of code written in this project is 2700. This seems
small, however the Torque Game Engine has provided a
useful basis on which to build the GSV Tool. Hence, a
greater part of the programming effort has involved un-
derstanding and reusing the Torque Game Engine frame-
work to its full potential. The Game Engine has more
than 113,000 lines of code (including the scripts). Thus,
even if the number of code lines added is small, the over-
all GSV Tool is large. The number of classes added to the
Torque Game Engine is 18 and each IDL class is in fact
an abstract interface. Since many of the 18 classes had
to either inherit from a class in the Torque framework
or from an abstract interface, the number of inheritance
links is 23 which is relatively high. The Max Fan In
value is 3. Usually, a Max Fan In value greater than 1
indicates a complex inheritance hierarchy. In this case,
this is justified by the fact that all the classes that im-
plement a CORBA distributed object interface must in-
herit from many CORBA interfaces: the object interface
(one of the IDL interface definitions) and one CORBA
interface. The overall average number of methods per
class (5.88) and the average number of lines of code per
method (15) are both low. This low complexity is highly
desirable since the tool must be easily expendable for
future research.

Some experiments have been conducted to measure
the tool performance. One of these measures the GSV
Tool performance with one to five robots having a typical
behaviour. The typical behaviour reads 8 sonar sensors,
and then moves forward or turns depending on the read-
ings. After activating its virtual motors, it waits for 50
ms before the next sonar scan. Moreover, the behaviour
takes a picture every second and then waits for 20 ms.
This 20 ms delay represents the processing time of the
image. Using this behaviour to control the simulated
robots, the GSV Tool performance degradation is shown

1 2 3 4 5
0

2

4

6

8

10

12

14

16

18

20
GSV Tool Performance in Typical Multi−Robot Simulation (typical case)

Number of simulated robots

S
im

ul
at

io
n 

U
pd

at
e 

co
m

pu
ta

tio
n 

tim
e 

(m
s)

Figure 7: Effect of the number of robots on the GSV
Tool performance (typical case)

1 2 3 4 5
0

50

100

150

200

250

300

350

400

450

500
Camera Reading Performance in Multi−Robot Simulation (typical case)

Number of Simulated Robots

C
am

er
a 

re
ad

in
g 

re
sp

on
se

 ti
m

e 
(m

s)

Figure 8: Camera reading response time (typical case)

in figure 7. Even with 5 simulated robots, the simu-
lation state is updated on average in less than 20 ms
which is fast enough to have a smooth display. But each
time a picture is taken using the camera emulator the re-
fresh takes longer. With five robots, the display appears
slightly jerky. Figure 8 presents the average camera emu-
lator reading response times for one robot. The camera
emulator response time is relatively constant and thus
predictable. This result also show that the number of
robots does not influence significantly the performance
of the sensor emulators.

The focus of our work has been to provide a tool for
graphical simulation and visualisation. Robot devices
have been implemented in the simulation to evaluate the
tool’s capabilities. The simulation models have not been
systematically validated against real robot sensors and
actuators. Current work includes physical modelling of
robot devices, which will be validated against reality.

7



8 Conclusion

This paper has described the GSV Tool Project which
helps humans to visualise robot behaviours in different
environments. It is integrated in a broader robot pro-
gramming environment supported by a Service Based
Architecture. The GSV Tool can display any robot
model controlled by a robot behaviour using a state-
of-the-art game engine to render the virtual world thus
giving an accurate 3D perspective of the evolution of the
robots in the virtual environment. The GSV Tool also
uses services registered to a Service Broker to control
the simulated robots. Moreover, the tool can also regis-
ter itself as a Simulation Service so robotic applications
can use the tool without the intervention of a human. A
simulation can be accessed by many researchers at the
same time and the robots are controlled by behaviours,
possibly from another research group, available from the
service broker. In addition, a simulation can be recorded
and played at a later time to show the results to a wider
audience. The performance measurements have shown
that the simulation of five robots with typical behaviour
in the same environment seems to be the upper limit for
the tool at this stage.

References

[Chen et al., 1994] ChuXin Chen, Mohan M. Trivedi,
and Clint Bidlack. Simulation and animation of
sensor-driven robots. IEEE Transactions on Robotics
and Automation, 10(5):684–704, October 1994.

[Dixon et al., 1999] Kevin Dixon, John Dolan, Wes-
ley Huang, Christian Paredis, and Pradeep Khosla.
RAVE: A real and virtual environment for multiple
mobile robot systems. In Proc. of the 1999 IEEE/RSJ
International Conference on Intelligent Robots and
Systems, pages 1360–1367, 1999.

[Garage Games, ] GarageGames.com,
http://www.garagegames.com/. Torque Game
Engine.

[Kimoto and Yuta, 1992] Katsumi Kimoto and Shin’ichi
Yuta. A simulator for programming the behavior of
an autonomous sensor-based mobile robot. In Proc. of
the 1992 IEEE/RSJ International Conference on In-
telligent Robots and Systems, pages 1431–1438, 1992.

[Kuffner et al., 2000] James J. Kuffner, Satoshi Kagami,
Masayuki Inaba, and Hirochika Inoue. Graphical sim-
ulation and high-level control of humanoid robots.
In Proc. IEEE/RSJ Int. Conf. on Intelligent Robots
and Systems (IROS’00), volume 3, pages 1943–1948,
November 2000.

[Trépanier, 2003] Félix-Étienne Trépanier. A graphical
simulation and visualisation tool for mobile robotics

applications. Master’s thesis, University of Auckland,
July 2003. Under examination.

[Trieb and von Puttkamer, 1994] Rainer Trieb and
Ewald von Puttkamer. The 3d7-simulation en-
vironment: a tool for autonomous mobile robot
development. In Proc. of the Second International
Workshop on Modeling, Analysis and Simulation of
Computer and Telecommunication Systems, pages
358–361, 1994.

[Wang, 1997] Jing Wang. Methodology and design prin-
ciples for a generic simulation platform for distributed
robotic system experimentation and development. In
International Conference on Systems, Man and Cy-
bernetics, pages 1245–1250, 1997.

[Woo et al., 2003] Evan Woo, Bruce A. MacDonald, and
Félix Trépanier. Distributed mobile robot application
infrastructure. In International Conference on Intel-
ligent Robots and Systems (IROS), pages 1475–1480,
Las Vegas, October 2003.

[Woo, 2002] Evan Woo. A distributed application infras-
tructure for mobile robot. Master’s thesis, University
of Auckland, November 2002.

8


