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Abstract

Current positioning infrastructures such as
Global Positioning System (GPS) are great for
outdoor localisation but are limited and most
of the time unavailable in indoor applications.
Current smartphones provide new opportuni-
ties for user indoor localisation by leveraging
low cost embedded sensors.

This paper presents an indoor positioning sys-
tem using accelerometers, gyroscopes and mag-
netometers which are readily available in most
current smartphone. The method proposed is a
practical solution for smartphone-based locali-
sation that could minimise the errors due to
noise from the low cost inertial sensors and ran-
dom handling condition of the smartphone by
the user. The main focus in increasing the accu-
racy of indoor localisation system in this paper
is by correcting the path taken by the user by
implementing a map-based particle filter that
takes into account situations where all the par-
ticles are at an invalid position and considered
dead. This localisation system assumes that
the map provided is complete hence positions
and paths that lie outside of a valid space are
considered impossible for the user to be in and
invalid. Experiments have been conducted to
test the performance of the proposed method.
Two different Android smartphones were used
and 30 samples were collected with each sam-
ple covering a distance of more than 100 me-
tres. Results from experiments show that the
proposed method was able to localise a person
in an indoor environment with a mean error of
less than 2 metres when the final position is
compared to the real final position.

1 Introduction

Current localisation methods rely mostly on infras-
tructure such as Global Positioning System (GPS),

Global Navigation Satellite System (GLONASS) or Base
Transceiver Station (BTS) of a service provider. How-
ever, in an indoor environment, these infrastructures are
unreliable and in worst cases unavailable due to the ob-
struction of a direct line-of-sight of the radio transmis-
sion by walls and roofs of buildings. The development
of an accurate indoor positioning system is needed as
the benefits of this application are limitless, including
higher satisfaction in shopping experience, navigation for
firemen in buildings filled with smoke and also reducing
cross infection between patients in a hospital.

Fallah et al. [2013] in their survey outlines ex-
isting human indoor localisation solutions where GPS
signals are assumed to be unavailable. Among all
the methods introduced, Pedestrian Dead Reckoning
(PDR) is one of the methods outlined and is feasi-
ble to be implemented using a smartphone because it
uses the data obtained from an Inertial Measurement
Unit (IMU) which is always available in a smartphone
nowadays to predict the current position of the user.
Other localisation methods which are feasible using a
smartphone is triangulation and fingerprinting using
either Bluetooth or Wi-Fi. Bluetooth Received Sig-
nal Strength Indicator (RSSI) based localisation tech-
niques have been proven to be able to estimate the
distance of a receiver from the transmitter by corre-
lation the RSSI value with distance [Cho et al., 2015;
Jung et al., 2013]. By installing multiple Bluetooth bea-
con and noting the position of each beacons, triangula-
tion could be performed when three or more Bluetooth
beacons are detected at once [Jianyong et al., 2014].
The same implementation can also be applied to Wi-Fi
hotspots as proven in research by Zhu and Feng [2013].
Fingerprinting-based localisation could also be achieved
using Bluetooth and Wi-Fi signals [Kriz et al., 2016;
Navarro et al., 2010] but it requires a database of signal
strength in different locations throughout the localisa-
tion area and could be time consuming in the offline stage
and infeasible if the localisation area is huge. However,
both of these methods require additional infrastructure



to be purchased and installed rather than just using a
device which the majority of the population already own.

Smartphone based indoor localisation is an interest-
ing topic that is still being actively researched. This is
because current smartphones have built-in sensors and
receivers that could be useful for localisation and have
enough processing power to perform localisation meth-
ods in addition to the high rates of ownership of smart-
phones. Prior research proves that it is possible to per-
form indoor localisation utilising only the built-in smart-
phone IMU without needing any additional infrastruc-
ture within an acceptable accuracy [Li et al., 2012]. In-
door localisation using a smartphone with the help of
additional infrastructure was also proven feasible by Lui
et al. [2013] by designing and building their own high-
band acoustic transmitting beacons utilising network co-
ordination protocols to localise smartphone users in dif-
ferent indoor environments.

This paper propose an indoor localisation system
based on data collected from accelerometer, gyroscope
and magnetometer inside of a user smartphone. The
main focus is to increase the accuracy of the predicted
position by applying a map-based particle filter that
takes into account situations where all the particles col-
lide into non-feasible region and are considered dead.
The method proposed does not requires any installation
of additional hardware and would only rely on the IMU
embedded inside a smartphone and a complete map of
the localisation area. In addition, no calibration was
also done prior on the Android smartphone and no of-
fline training was required. The conceptual idea is to
correct the path generated by PDR due to the accumu-
lation of errors especially in detecting steps and getting
corresponding stride length. The proposed indoor local-
isation system described in this paper integrates method
of indoor localisation together with correction methods.
A map-based particle filter and also a history-based par-
ticle filter is integrated with the PDR in order to reduce
the error produced in the path created. The proposed
idea will then be evaluated with the path taken by PDR
only and also PDR together with conventional particle
filter through experiments in an indoor environment.

The rest of the paper is organised as follows: Sec-
tion 2 provides the PDR method used. Section 3
describes the proposed particle filter technique used to
correct the path generated by PDR. Next, Section 4
presents the system integration implemented. In Sec-
tion 5, the performance of the system is evaluated and
compared. Finally, the conclusion and future work are
outlined in Section 6.

2 Pedestrian Dead Reckoning (PDR)
using a Smartphone

PDR is a method where the current position is predicted
based on a known or assumed to be known previous po-
sition. Sensors such as accelerometers, gyroscopes and
magnetometers are used in this recursive prediction [Fis-
cher et al., 2008]. Since the sensor embedded inside a
smartphone is a low cost microelectromechanical systems
(MEMS) IMU, the data obtained will be polluted with
high frequency noise. PDR is based on three compo-
nents: step detection, stride length of the corresponding
step detected and heading estimation. Unlike normal
IMU-based dead reckoning systems, which perform in-
tegration on acceleration to obtain the position from a
known position [Ojeda and Borenstein, 2007] which in-
troduces error due to the double integration, the error
introduced by PDR is due to failure to detect steps or
detecting false steps, inaccuracy of stride length calcu-
lation and heading estimation error. The error due to
step detection leads to introducing error in stride length
which will result in overestimating or underestimating
the total distance travelled by the user.

2.1 Step Detection

Acceleration readings from a three-axis accelerometer
are used to determine if a step is taken. The ap-
proach that was being used is similar to Pratama et al.
[Pratama et al., 2012]. Since that the orientation of the
phone is unknown due to the placement of the phone on
the user, the magnitude of acceleration at time t, a(t)
is calculated from the root of sum of squares of all the
three acceleration components:

a(t) =
√
a2x + a2y + a2z − g (1)

Where g is constant to remove the influence of grav-
ity on the accelerometer that represents the acceleration
due to gravity (9.8m/s2). Using the magnitude of ac-
celeration increases the robustness of step detection as
the phone could be placed in an unknown orientation by
the user. Peak and valley detection of the acceleration
magnitude was used to detect possible steps taken. In
order to distinguish false steps with all the peaks de-
tected, thresholding of the peaks and valley are done as
applied by Pratama et al. [2013] where the maxima and
minima threshold changes dynamically base of previous
true value of peak and valley. The maxima and minima
threshold for step k is as shown in Equation 2:

max(k)threshold = valley(k − 1) + cmax

min(k)threshold = peak(k − 1) + cmin

(2)

Where cmax and cmin are constants obtained from ex-
perimentation. The initial thresholds were also being



Figure 1: Part of the acceleration vs time signals used
for step detection. Blue line is the acceleration data ob-
tained from the accelerometer. The red line and the
green line are the maximum and minimum dynamic
threshold. Red points and green points are valid peaks
and valleys detected.

defined first. Figure 1 shows a part of a detected steps
by applying this step detection method. Based on the
figure, the red line is the dynamic maxima threshold and
the green line is the minima threshold. Green points and
red points are points where true peaks and valleys are
detected respectively.

2.2 Stride Length

In practical for a single person, the stride length of
each steps differs from one another. The stride length,
d(k)stride for step k can be calculated from the magni-
tude of the acceleration obtained in a single step cycle
by applying the an empirical formula [Bylemans et al.,
2009] as shown in Equation 3:

d(k)stride = 0.1× 2.7

√√√√|a| ×√
M

∆t× (amax − amin)
(3)

Where t is the period of the step, |a| is the absolute
average acceleration based on number of samples of ac-
celeration in one step and M is a constant that varies
with gender. The value of M could also be calibrated
for an individual, but this calibration was not being per-
formed in this study.

2.3 Heading Estimation

The angle with respect to the initial orientation can eas-
ily be obtained by integrating the angular rate obtained
from a gyroscope. The orientation with respect to the
magnetic north could also be obtained from a magne-
tometer. Both methods are useful in estimating the users
heading but each method has its own drawbacks. The
gyroscope is sensitive to minute angular changes of the
human body which causes the data obtained from it to

be unstable. This eventually introduces drift errors when
integration of the gyroscope reading is performed. On
the other hand, while orientation obtained from the mag-
netometer is known to maintain its accuracy over time,
the magnetometer reading can fluctuate due to magnetic
field disturbance which is more common in an indoor
environment. Kang et al. propose fusing both orienta-
tion data by exploiting the accuracy of magnetometer
and also using the gyroscope data to detect changes in
the magnetometer that is due to magnetic field distur-
bance [Kang et al., 2012]. The heading estimation in
the propose indoor localisation system implements the
algorithm proposed by Kang et al.

3 Map-based Particle filter

Previous research proved that a map-based particle filter
was able to improve the position estimation accuracy
of PDR [Kim and Kim, 2012]. Particles are assigned
with weight and the final position estimation is based on
the distribution of the particles in the valid localisation
space. Initially all particles are assigned with similar
weights. In this study, a single particle propagated at
step k is based on the heading, θ and stride length, d
obtained from PDR as shown in Equation 4:

Algorithm 1 Map-based Particle Filter

Move all particles based on Equation 4
Get particles that are dead
if all particles are dead then
i = 0
n = 0
while (number of particles)/N is dead do

if i = 0 then
θ = θ(k − 1)

else if i = even number then
θ = θ(k) + sign(θ(k)− θ(k − 1))n× c

else if i = odd number then
θ = θ(k)− sign(θ(k)− θ(k − 1))n× c
n+ +

end if
Move particles using θ based on Equation 4
i+ +

end while
else

for each dead particle do
while particle is dead do

Select a random living particle
Find new position based on Equation 5

end while
end for

end if



Figure 2: History fitting on previous position. Blue
points are estimated positions of previous steps. In this
case the path produced by PDR goes straight through
the wall for a few steps before turning. In this case
no psuedo-positions are required since all the pseudo-
positions are going to be in a non-localisable area.

x(k + 1) = x(k) + (d(k) + δd) cos(θ(k) + δθ)

y(k + 1) = y(k) + (d(k) + δd) sin(θ(k) + δθ)
(4)

Where δd and δθ are the random zero mean Gaus-
sian noise. In order to reduce computation requirements,
Boolean logic is used to represent the weight of each par-
ticle with 1 being alive and 0 being dead. A particle is
assigned a weight of 0 if its position is outside of a non-
feasible region inside of the map or if it passes through
an object. Particles with position (xd, yd) that is dead
are repositioned by selecting a random living particle
of position (xr, yr) and randomly placing it somewhere
around that chosen living particle:

xd = xr + δr × cos(δφ)

yd = yr + δr × sin(δφ)
(5)

Where δr is a random number representing the dis-
tance to selected particle (xr, yr) in the range of [0, 1]
metres while δφ is a random number representing angle
in the range of [0, 2π] in radians. The user position is
the centroid position of the particles. The algorithm of
the map-based particle filter is summarised in the pseu-
docode Algorithm 1, where θ(k) and θ(k−1) is the head-
ing estimation at step k and previous step k − 1 respec-
tively. c is the increment in heading constant.

Figure 3: History fitting on pseudo-position. Blue points
are estimated positions of previous steps while red points
are pseudo-points created. In this case the path pro-
duced by PDR turns and goes through the wall at step
k where it is suppose move ahead a few steps before
turning.

3.1 History-based particle filter

The implementation of the map-based particle filter as
described in previous section causes the path to have a
different shape compared to the path generated by PDR
when all of the particles are dead. Due to the correction
of heading when all of the particles are dead in order to
fit a path in the map, the shape of the corrected path by
the map-based particle filter may deviate in comparison
to the shape of the path produced by PDR. This could
be undesirable since the shape of the path generated by
PDR represents the real path but in a drifted manner.
Guivant et al. proposed a method of using the history
of path generated when a vehicle is detected to be out of
the road network and used the history to deal with out-
of-map vehicle localisation in a incomplete map [Guivant
et al., 2010]. The approach was able to deduce that the
vehicle is on a road that was not included in the map.
In this paper, the history-based particle filter deals with
events when all of the particles are dead by saving path
generated by pure PDR for 5 steps starting from the
position at step k − 1. This saved path is called the
history. After detecting and saving five steps, pseudo-
positions are placed in the map to represent steps k + n
by using heading and stride length information from step
k−1. The history is then matched into the map by fitting
the history to the position at step k−2 and if no solution
is found, the history is then fitted to the position step
k + 1 and the fitting step repeated at k −m and k + n



until a solution is found. Pseudo-positions are placed
due to the assumption that the path could be shorter
than the real path taken due to error produced during
the PDR process where steps are failed to be detected.
Figure 2 and Figure 3 shows the possible fitting of the
history to previous positions and psuedo-positions.

4 System Architecture

Figure 4 shows the system integration of the proposed
indoor localisation system. The overall system includes
pedestrian dead reckoning, map-based particle filter and
also history-based particle filter.

5 Performance Evaluation

The experiment was conducted using two Android
phones, LG G3 and a Sony Xperia Z3 compact. Both
phones are equipped with the sensors that are needed
which are accelerometers, gyroscopes and also magne-
tometers. The experiment was conducted to test and
compare the position accuracy of the path produced by
PDR, PDR and map-based particle filter and also PDR
and history-based particle filter. An app was designed
to collect the raw sensor data from the phone at a fre-
quency of 50Hz. The data is then being processed in
MATLAB on a computer after data collection is done.
The data is processed in such a way that simulates data
processing in an online manner such that no future data
is known beforehand. Each set of experiments was run
with 3 different participants 5 times for each phone. The
experiment was conducted in the Mechatronics lab and
corridor of the Willis Annexe building. A path was de-
signed and marked on the floor for participants to follow
the path. The real path taken by the participant may
not be the same as the marked path since participants
are allowed to make a turn naturally based on their walk-
ing styles whereas the marked path has a 90 degree turn.
The path covers a total distance of 109.92 metres. It took
around 2 minutes to complete a single path at normal
walking speed.

Based on the results, the history-based particle filter
was able to further correct the path produced by the

Table 1: Localisation accuracy from data collected on
LG G3

PDR MPF HPF
Average error (m) 10.75 6.48 1.89

Average accuracy (%) 90.22 94.11 98.28

Table 2: Localisation accuracy from data collected on
Sony Xperia Z3 compact

PDR MPF HPF
Average error (m) 10.89 5.72 0.90

Average accuracy (%) 90.10 94.80 99.18

Figure 4: System architecture of the integration of the
whole system consisting of Pedestrian Dead Reckoning,
map-based particle filter and also history-based particle
filter.

mapped-based particle filter across both devices. Fig-
ure 5 show the trajectory of the path produced by PDR,
PDR and map-based particle filter and also PDR and
history-based particle filter. The figure shows the worst
outcome that was produced by the map-based particle
filter out of all data sets collected and how the history-
based particle filter were able to correct the trajectory
of the path taken. The map-based particle filter wasn’t



Figure 5: Path produced by three methods in a given map. White area is the localisable area and the black area is
invalid region while red area is area of low probability for a position to be in. The green line represents the real path,
red line represents path produced by PDR. The black line and blue line represent paths generated by the map-based
particle filter and the history-based particle filter respectively. The initial position is set at point (1756, 907.4) and
the real end position is at point (1756, 1271). This is the worst outcome that was produced by the map-based particle
filter and shows how the history-based particle filter was able to correct it.

able to correctly produce a position in a situation where
all of the particles are dead and repositioned. This situa-
tion gets worst as more steps are taken and added to the
position that was already off track. Table 1 and Table 2
shows the mean accuracy in distance and also percent-
age of each method namely Pedestrian Dead Reckoning
(PDR), PDR and map-based particle filter (MPF) and
also PDR and history-based particle filter (HPF). Table
1 shows results obtained from the LG G3 while Table
2 shows results obtained from the Sony Xperia Z3 com-
pact. In general the history-based particle filter produces
the most accurate trajectory with an average accuracy
of the final position compared to the real final position
of 98.28% for the LG G3 and 99.18% for Sony Xperia Z3
compact. The different smartphones used did not have a
significant effects on the performance of the localisation
across all three methods.

6 Conclusion and future work

The history-based particle filter has been demonstrated
to be able to increase the accuracy of localisation of a
person by utilising the sensors inside of a smartphone.

The method propose does not need any installation of
any extra hardware other than the smartphone itself and
a map of the localisation area.

Based on the results, the history-based particle filter
was able to localise a person within 2 metres of accu-
racy. More importantly, the proposed method was able
to correct the path produced by the map-based particle
filter which deviates from the real path as all of parti-
cles are dead and being repositioned. In the experiment,
the brand of smartphone used does not have any signif-
icant effect on the performance or the accuracy of the
localisation.

Since the proposed method depends greatly on the
information provided from Pedestrian Dead Reckoning
(PDR), The PDR could be improved further especially
the heading estimation algorithm which is the major
source of error in localisation. This method could also
be extended by including an infrastructural based local-
isation such as such including Received Signal Strength
Indication (RSSI) based localisation from known posi-
tioned Bluetooth beacons or Wi-Fi hot spots in order to
improve the particle filter method by checking whether



the particles are in a region of high probability based on
the ranges from the receivers. Since that it is important
for the user to get to know their position as they walk in
a real life application, the data obtained from the sen-
sors are needed to be processed in real time. Feasibility
studies need to be conducted to in order to identify the
suitability of the data being processed on the smartphone
itself by a low powered processor.
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