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Abstract 

Locating the source of a chemical or acoustic 
emitter in an unknown environment with noise-
corrupted detector signals is a challenging task 
undertaken regularly in emergency-response 
operations. Such missions can endanger per-
sonnel, thus the use of autonomous systems 
would be highly advantageous. In this research, 
an approach for autonomous bearings-only 
tracking (BOT) is trialled in a proof-of-concept 
experiment relying on a bright light source and 
a sensor constructed from photodiodes and 
carried atop a radio-controlled ground vehicle. 
The goal is to test the algorithm’s performance 
with real-world, noise-corrupted data. A Ber-
noulli particle-filter algorithm, designed to tol-
erate cluttered signals, is used to estimate the 
location of the light source from low-resolution 
measurements of its bearing. Data is collected 
with a variety of navigational patterns in an 
environment that occasionally produces false 
detections. The algorithm yields accurate esti-
mates of the location of the light source (on 
average, 22 cm from a source with a 16-cm 
horizontal aperture); however, in some cases, 
false detections result in poor estimation of the 
source position and large uncertainties. Future 
research will aim to address the limitations of 
the current trial and to implement the algorithm 
on an autonomous platform.  

1 Introduction 

Unmanned systems have proven useful in a variety of 
military and civilian applications, including emergency 
response, humanitarian assistance, and disaster relief 
[Anon., 2012]; and systems with advanced autonomous 
capabilities could significantly reduce the risks to per-
sonnel in unknown or un-cleared areas for intelligence, 
surveillance, and reconnaissance missions, as well as 
more specialised operations, such as contaminant-source 

localisation or search and rescue/recovery. Autonomous 
systems may eventually supplement or replace highly 
trained personnel in the most dangerous parts of these 
safety-critical, labour-intensive tasks.  

For use in missions to detect and locate an emitter 
of, for example, a chemical, biological, or radiative 
(CBR) contaminant, autonomous systems must be capa-
ble of performing searches without continual human in-
tervention. The conditions in which emergency-response 
missions are performed are varied and often present sig-
nificant navigation and path-planning challenges for 
autonomous systems. For example, in cluttered urban 
terrain, including inside buildings, data from global nav-
igation satellite systems and line-of-sight communica-
tions signals are unreliable (or unobtainable).  

This paper describes the demonstration of a bear-
ings-only-tracking (BOT) algorithm that may eventually 
be executed on mobile air and ground platforms during 
counter-CBR missions, or on autonomous undersea 
platforms searching for a downed aircraft by sensing its 
acoustic beacon. BOT strategies rely on noise-corrupted 
bearing measurements to estimate the kinematics (posi-
tion and velocity) of a target/source with a purely radial 
dispersion (e.g., a radiative source or a chemical diffus-
ing in a region without wind). Common defence appli-
cations employ a variety of active and passive sensing 
techniques and include submarine tracking with passive 
sonar and radar tracking of aircraft [Arulampalam, et 
al., 2007]. The success of BOT algorithms relying on 
passive sensors depends on the sensor’s motion having a 
non-zero derivative at least one order higher than that of 
the target [Yan et al., 2014]. For example, to track a tar-
get with a constant, non-zero velocity, a seeker needs to 
change its course relative to the target or to accelerate 
along a straight-line course [Arulampalam, et al., 2007].  

The BOT algorithm tested here utilises a particle 
filter (PF) with a Bernoulli process that increases its ro-
bustness to false detections and intermittent target/
source loss. With any PF, the required posterior density 
of the state vector (the location of the source in the pre-
sent case) is represented by a set of random samples 
(‘particles’) with associated weights [Arulampalam, et 



al., 2007]. The weighted average of the samples pro-
vides an estimate of the state vector. With every new 
measurement, the weights are updated according to the 
likelihood of the corresponding particle state. With a 
Bernoulli PF, the updating of each particle involves a 
likelihood-ratio calculation for all possible source-origi-
nated signals [Ristic et al., 2013]; thus, the level of 
complexity (and processing time) is higher than that of a 
traditional PF-based algorithm.  

Techniques relying on PFs have shown promise in 
the solution of challenging nonlinear signal-processing 
problems, and their recursive structure provides oppor-
tunities for real-time utilisation [Arulampalam and 
Ristic, 2000; Arulampalam et al., 2002; Gordon et al., 
1993; Ristic et al., 2004]. PF-based techniques exhibit 
superior performance in comparison with Kalman fil-
ters, though at the cost of higher computational time 
[Aidala, 1979; Aidala and Nardone, 1982; Aidala and 
Hammel, 1983; Arulampalam and Ristic, 2000; Gordon, 
et al., 1993; Nardone and Graham, 1997; Peach, 1995].  

2 Background and Overview  

The Defence Science and Technology (DST) Group is 
developing search and tracking algorithms that can ena-
ble autonomous localisation of CBR sources and be 
used in myriad other applications. The research de-
scribed here is part of a broader program to develop 
autonomous-control capabilities for robotic systems that 
can enhance the safety and efficacy of emergency-re-
sponse missions, amongst others, in urban terrain.  

This study seeks to extend previous DST Group re-
search on PF-based algorithms for source localisation 
performed through simulation [Ristic and Arulampalam, 
2012]. In the literature, applications of PF-based search 
and tracking algorithms to real-world data are scarce, 
particularly for the more recent algorithms such as those 
based on the Bernoulli PF. This study addresses the need 
for real-world data for use in assessing the performance 
of a PF-based BOT algorithm. 

The experiment described here utilises a small 
radio-controlled unmanned ground vehicle (UGV) car-
rying an array of photodiodes. A floodlight serves as the 
target/source. The photodiode measurements, along with 
motion-tracking data for the UGV, are processed to esti-
mate the bearing of the light source relative to the UGV. 
Reflective objects in the laboratory and other sources of 
stray light create noise in the bearing measurements and 
false detections. The Bernoulli PF-based localisation al-
gorithm [Mahler, 2004] is applied to the accumulated 
dataset. The UGV’s trajectory and the parameters of the 
BOT algorithm are varied to examine their effects on 
the accuracy of the resulting source-position estimate.  

3 Bearings-Only Tracking  

This section provides a brief summary of the mathemat-
ical models used in the Bernoulli PF and a description 
of the algorithm employed in the current experiments. 
The interested reader is referred to Ristic and Arulampa-
lam [2012] for more details.  

3.1 Mathematical Models  

Let  Tkkk y,xx  denote the target state at time index 
k, corresponding to its position in Cartesian coordinates. 
The target is assumed to be stationary so that kx  is 

invariant with time. To model target appearance/disap-
pearance, a binary random variable, k , is introduced:  

  1 ,0k .  

The dynamics of k  is modelled by a two-state Markov 
chain with a known transition-probability matrix 
(TPM). The TPM is completely defined by:  

  0 ,11   kkb Pp  ,  

the probability of target ‘birth’; and  

  1 ,11   kks Pp  ,  

the probability of target ‘survival’.  
At each time index k, a set of bearing measure-

ments  ,z,...zZ m,k,kk 1  is captured. Due to the imper-
fections of the sensor, at most one measurement is from 
the target and the rest are false detections. A target-
originated measurement can be modelled as 

   kk whz  x , (1) 

where kw  is a zero-mean independent Gaussian noise 
with variance 2

  and  
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is the four-quadrant inverse tangent function that gives 
the true target bearing at time index k evaluated from 
values over the interval, ᵶ   , . A target-originated 
measurement is detected with probability Dp , a param-
eter set a priori by use of knowledge of the sensor.  

The spatial distribution of false detections (clutter) 
over ᵶ is time invariant and denoted by c(z). The number 
of clutter points per bearing-measurement scan is as-
sumed to be Poisson distributed, with a mean of  .  

The problem is to detect the existence of a target, 
and, if one is present, to estimate its kinematic state 
(position), kx . In the Bayesian setting, this leads to the 
estimation of two posteriors: (1) the probability of target 
existence,  

  k:kkk Zpq 11  ,  

where kk: Z,...,ZZ  11   is the sequence of measure-
ment sets up to the current time index k; and (2) the 
spatial probability-density function (PDF) of the target,  

    k:kkk Zps 1xx  .  

3.2 Bernoulli Particle Filter 

The Bernoulli filter models the target state at time index 
k as a random finite set and is the optimal sequential 
Bayesian estimator for the problem described above 
[Mahler, 2004]. The prediction equations of the 
Bernoulli filter [Ristic and Arulampalam, 2012] are:  

   kkskkbkk qpqpq  11  and ( 3) 
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The term  xx  kkp 1  is the target transitional density, 
which for a stationary target is the delta function; and 

 xkkb 1  is the spatial distribution of predicted ‘target 
birth’. This predicted target-birth density is computed 
using the birth density  xkb  at the previous time – typi-
cally generated using the measurement set at the previ-
ous time index [Ristic and Arulampalam, 2012].  

Given a new measurement set, 1kZ , the Bernoulli 
filter is updated as follows. The probability of existence 
is updated by use of the expression:  
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Here,   and  zc  are the previously defined clutter pa-
rameters; and  xzg k 1  is the measurement likelihood 
function for a target-originated measurement, which is 
computed by use of Equation (1). Finally, the target spa-
tial PDF is updated as  
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The Bernoulli PF is essentially a sequential Monte 
Carlo implementation of the Bernoulli filter. It approxi-
mates the spatial PDF,  xkks , by a set of N weighted 
random samples (particles):  

  N

i

i

kk

i

kk
,w

1
x ,   

where i
kkx  is the state of particle i and i

kkw  is its corre-
sponding weight. This weighted set of particles is then 
used in each recursion to compute the integrals 
appearing in the above equations using Monte Carlo 
integration. Finally, the target-state estimate at time k 
can be computed as a weighted average:  
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i
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4 Experimental Arrangement  

4.1 Unmanned Ground Vehicle  

A Dagu robot with a ‘Wild Thumper’ chassis and a 75:1 
gearbox, pictured in Figure 1, is used as the basis for the 
UGV. It is low-cost, as well as being compact (43 cm 
long, 30 cm wide, and 14 cm tall) and lightweight, 
which reduces risks to personnel during the experiment. 
The system comprises mostly off-the-shelf, hobby-grade 
components, coupled with a Raspberry Pi 2 mini-
computer and an Arduino-based Dagu ‘T’Rex’ motor-
controller board. A 2.4-GHz Spektrum radio-control 
system is used to manually pilot the UGV. The motor-
controller board mixes the two-channel radio-control 

signals (throttle and steering) and governs the high-
current H-bridge circuits used to drive the left and right 
motors of the UGV.  

The experiments are conducted within a cleared 
rectangular region measuring 2.5 m × 4 m. The UGV is 
isolated from the experimenters by a knee-high barri-
cade, which provides an additional fail-safe to prevent 
injuries from potential collisions with the UGV.  

A number of UGV drive patterns are used to pro-
vide a variety of datasets for input to the BOT algo-
rithm. The trajectories include lateral passes, differently 
oriented triangles, rectangles, circular patterns, and 
snaking patterns. In total, thirteen different trajectories 
are chosen; and the UGV is piloted manually via radio 
control to approximate as closely as possible each 
pattern. The trajectory patterns are displayed in 
Figure 2, which also indicates the location of the light 
source with respect to the region in which the UGV 
travelled. Note that the trajectories are recorded with a 
motion-capture system, described in the next subsection, 
and those trajectories are input directly to the BOT 
algorithm for processing. No other model of the kine-
matics of the platform is utilised in this proof-of-
concept experiment.  

4.2 Motion Tracking  

An OptiTrack motion-capture system is used to record 
the position and orientation of the UGV throughout the 
experiment. Six OptiTrack Prime 17W cameras are 
mounted on the ceiling of the laboratory, along the 
perimeter of the experimental space; and OptiTrack’s 
Motive:Tracker software is used to track infrared (IR)-
reflective markers fixed to the UGV. Three markers are 
placed asymmetrically on the UGV, as shown in 
Figure 1, so that its orientation can be monitored. The 
error in the recorded position of the UGV is estimated to 
be less than 1 mm and the error in its orientation is 
estimated to be less than 1°.  

A Netgear ProSafe network switch (supplied by 
OptiTrack) is used to connect the cameras, an eSync 
time-synchronisation unit, and the PC running the 
Motive:Tracker software. The software is configured to 
broadcast frames of tracking data to another PC running 
a MATLAB™ data-acquisition script, which records the 
readings at a rate of 5 Hz.  

Figure 1: The UGV used in the experiments 
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Figure 2: UGV trajectories used in the experiments 
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4.3 Light Source and Sensor  

An Arlec 500-W portable halogen lamp is used as the 
light source. It has a rectangular aperture that is 16 cm 
wide and 12 cm tall; and the centre of the lamp (the 
horizontal bulb) is positioned 17.4 cm from ground 
level. As shown in Figure 2, it is located outside the 
2.5-m × 4.0-m region in which the UGV travels, at a 
perpendicular distance of 66.5 cm from one of the long 
edges of the rectangle and 23.1 cm laterally from the 
centre of that side. Its face is approximately parallel to 
the long side of the rectangle, and its location relative to 
the near-right corner of the region is recorded with the 
motion-capture system.  

Silicon photodiodes from Osram (Opto BPW 21) 
are used to create a sensor to detect the bearing of the 
light with respect to the UGV. The photodiodes are sen-
sitive at visible wavelengths (350–820 nm). At the 800-
nm wavelength of the IR pulses emitted by the Opti-
Track system, their sensitivity falls to ~ 10% of its peak; 
thus, the selected photodiodes minimise false detections 
caused by light from the motion-tracking system.  

Eight photodiodes are arranged in a circular array 
and mounted atop the UGV in a housing printed in ABS 
plastic. Figure 3 shows its design, along with the place-
ment of the photodiodes and other system components. 
The housing prevents direct exposure of the photodi-
odes to light from above (e.g., from the motion-tracking 
system) and limits the angle of horizontal acceptance of 
each photodiode to 45°. When mounted on the UGV, the 
photodiodes are 17.6 cm from the ground and oriented 
so that one faces directly ahead of the UGV (normal to 
its main – longitudinal – axis).  

A 10-bit analogue-to-digital converter (a Micro-
chip Technology, Inc., MCP3008 ADC chip) mounted 
on a small board atop the UGV samples the voltage 

output of the photodiode circuit, providing the relative 
intensity of the light incident on each photodiode. The 
ADC chip is digitally interfaced to the Raspberry Pi via 
an SPI serial interface. The data are transmitted from the 
Raspberry Pi to the computer running the MATLAB 
data-acquisition script via a Wi-Fi modem and recorded 
at a rate of 5 Hz.  

4.4 BOT-Algorithm Implementation  

A computer running the Windows 7 operating system 
with an Intel i7 3.40-GHz processor and 8 GB of RAM 
is used to execute the BOT algorithm. It is implemented 
in a MATLAB script that utilises the simultaneously 
recorded time-histories of the UGV position and orien-
tation and sensor readings as inputs. During each run, 
the script can display an animation showing the actual 
source location, the track of the UGV, its current posi-
tion, the particles forming the posterior PDF of the 
source location, and the estimated source position. This 
permits the user, if desired, to observe the behaviour of 
the algorithm during processing. A frame from the ani-
mation created during the analysis of the dataset ac-
quired with trajectory 6 is given in Figure 4. For each 
run, the processing time and the x- and y-coordinates of 
the final source-position estimate are also recorded.  

 The BOT algorithm utilises several assumptions 
and requires a priori knowledge of parameters related to 
the characteristics of the tracked source and the operat-
ing environment. Firstly, the source is assumed to be 
omnidirectional. This is obviously untrue for the current 
experiment, but (at least partially) overcome by the use 
of a wide-angle (flood)light and its position outside, but 
facing, the region in which the UGV travels – thus being 
relatively uniform from where it is observed.  

A value for the source-detection probability ( Dp ), 
a measure of the sensor’s response to source signals, is 
required. Preliminary analysis of the sensor data indi-
cates that the source is highly visible amongst the clutter 
created by reflections and other stray light in the labor-
atory from close-up to distances greater than 5 m. A pro-
cess of trial-and-error indicates that a value of Dp  
equal to 0.92 is suitable. The measurement range of the 
sensor is also required, to restrict the particle-position 

Figure 3: (a) Internal and (b) side views of the custom-
made photodiode housing and other system components 
sitting atop the Dagu robot’s mounting plate, which is 
38 cm long and 12 cm wide 
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estimates to realistic values. Here, the sensing range of 
the photodiodes is taken to be 5 cm – 5 m, based on the 
size of the laboratory in which the experiments are 
conducted and the basic geometry shown in Figure 2.  

The orientations of the photodiodes are defined in 
a MATLAB routine that computes the source bearing 
relative to the longitudinal axis of the UGV (and hence 
to the normal of the forward-looking photodiode). For 
each sample of eight light-intensity measurements, the 
photodiode with the largest signal is identified; and a 
quadratic function describing the light intensity as a 
function of bearing angle is fitted to the signals recorded 
by that photodiode and the ones on either side of it. The 
bearing angle at which the quadratic function has its 
maximum value is taken to be the source bearing.  

As described in Section 3.1, the algorithm also 
includes a parameter for the standard deviation of the 
random source-bearing error (  ). Through trial-and-
error, a value of 20° is chosen. It is also representative 
of the resolution of the individual photodiode measure-
ments (22.5°).  

Source intermittency is modelled with two addi-
tional parameters: the probability of particle birth be-
tween updates ( bp , as defined in Section 3.1), used so 
that if the source is lost it can be found again; and the 
probability of particle survival between PF updates 
( sp ), used to remove a previously identified source 
when measurements cease to point to it. Here, values of 

0.01bp  and 0.99sp are chosen based on simula-
tions of similar tracking problems [Ristic and Aru-
lampalam, 2012].  

Finally, the algorithm employs a parameter for the 
average number of clutter points per measurement scan 
( , defined in Section 3.1) and models the spatial distri-
bution of the clutter signal (c(z)). Here, the clutter is as-
sumed to be uniformly distributed; and   is taken to be 
0.2.  

5 Results and Discussion  

5.1 Effect of UGV Trajectory  

The source-position estimate provided by the BOT algo-
rithm is examined as a function of UGV trajectory by 
executing the algorithm with a dataset collected with 
each of the trajectories shown in Figure 2. To reduce the 
effect of run-to-run differences caused by the random 
functions used in calculating posteriors in the PF (e.g., 
in the Monte Carlo integration process), each dataset is 
processed 1,000 times. The results, computed with 
3,000 particles, are averaged; and their standard devia-
tions are computed. Table 1 provides the mean source-
position estimate for each trajectory, in terms of the er-
rors in the x- and y-directions relative to the centre of 
the light source, xD  and yD , respectively, and the total 
source-position error ( 22 yx DD ). Results from an 
analysis of the spatial characteristics of each trajectory 
are given, along with the number of samples and the 
mean processing time for the dataset.  

The data for the mean processing time for the vari-
ous trajectories show that it increases linearly with the 
number of samples acquired. On average, just over 1 s is 
required to compute 25 state updates of the 3,000-
particle BOT algorithm on an Intel i7 computer.  

 The mean source-position estimate for each trajec-
tory is plotted in Figure 5. The standard deviations asso-

ciated with the source-position estimates (shown by the 
error bars) are measures of random variation in the 
1,000 estimates included in each mean. Those errors are 
distinct from, though related to, the standard deviations 
of the x- and y-oriented spreads of the 3,000 particles 
used to generate the individual estimates included in 
each mean. (See Figure 4 for an example of the relative 
spreads of the particles used to estimate the source posi-
tion each time the algorithm is executed.) 

The data in Figure 5 and Table 1 indicate that the 
mean source-position estimate varies significantly with 
trajectory, with differences amongst the estimates being 
larger than the characteristic length of the source (its 
horizontal aperture size, 16 cm, represented by the error 
bars about the symbol representing the centre of the 
light source). Excluding one outlier with very large 
standard deviations (the result for trajectory 13), the 
source-position estimates are clustered about a point 
13.3 cm to the left of the light source and 13.2 cm 
behind it. This position is a weighted average of the 
means for the trajectories, evaluated with the inverse 
standard deviations used as the weightings, and is also 
shown in Figure 5. The error bars displayed with this 
point represent the standard deviations of its x- and y-
coordinates.  

The distance from the centre of the light source to 
the weighted-average estimate for all trajectories (ex-
cept 13) is only slightly larger than the horizontal aper-
ture of the source; and five of the trajectories (7, 12, 4, 
8, and 9) yield estimates within one characteristic length 
of the centre of the actual source. However, a systematic 
error in the mean source-position estimates is suggested 
by the data presented in Figure 5: all of the errors in the 
x-direction are negative, whereas the errors in the y-
direction are both positive and negative.  

The systematic error may be explained by a small, 
constant error in the measured orientation of the UGV.  

Figure 5: Mean source-position estimate relative to the 
actual position of the source, computed by the BOT 
algorithm with 3,000 particles for each trajectory; and 
the location and horizontal extent of the light source 
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This source of error is identifiable when the data for the 
trajectories are processed. The error originates during 
preparation for the experiment, when a UGV-orientation 
reference is created. The UGV is positioned in the 
experimental space with its longitudinal axis at a de-
fined orientation and imaged by the motion-capture 
system. This serves as a reference from which clockwise 
changes are recorded as the UGV is tracked. The pro-
cess relies on alignment of the UGV in a particular 
direction by eye and is thus prone to error. A compari-
son of the UGV orientation inferred from straight por-
tions of several of the trajectories shown in Figure 2 
with the mean UGV orientation recorded by the motion-
capture system reveals a constant error of 2° in the 
recorded orientation. The motion-capture data is cor-
rected for this error when it is processed to obtain the 
results shown in Table 1 and Figure 5.  

A comparison of mean source-position estimates 
generated by the BOT algorithm with and without the 
2°-correction demonstrates that the correction, on aver-
age, halves the x-direction error in the mean source-
position estimate for each trajectory (with the exception 
of trajectory 12, for which the error increases by 1 cm 
when the correction is applied). The fact that the esti-
mates still lie exclusively to the left of the actual source 
position (Figure 5) suggests that an additional, as-yet 
unidentified systematic error may exist in the UGV-ori-
entation measurements. Based on the results obtained 
with and without the 2°-correction, the unidentified 
error is estimated to be between 2° and 4°.  

Although this small systematic error makes com-
parative assessments of the different trajectories diffi-
cult, some observations may be made about the charac-
teristics of the source-position estimates as a group. For 
example, the standard deviations of the mean source-

position estimates indicate that the uncertainties are 
consistently larger in the y-direction than in the x-direc-
tion. This is in accordance with the spread of the parti-
cles shown in Figure 4 (and hence the standard devia-
tions of the x- and y-coordinates of the resultant source-
position estimate). On average, the standard deviation of 
the position error in the y-direction is twice that of the 
error in the x-direction. The disparity in the relative 
magnitudes of the uncertainties is likely caused by the 
fact that the region in which the UGV travels is exclu-
sively in front of the light source. It is likely not to be 
influenced strongly by the suspected systematic error, as 
the standard deviations of the x- and y-coordinates of 
the mean source-position estimate for each trajectory 
change relatively little with the 2°-correction to the 
UGV-orientation data.  

It is also useful to examine the trajectory that leads 
to a mean source-position estimate with large uncertain-
ties: trajectory 13. The animation displayed as the BOT 
algorithm is executed reveals significant clutter in light-
intensity data acquired in the right-hand corner of the 
UGV’s region of travel, nearer to the light source 
(approximately defined by x  3.3 m, y  0.7 m). Signal 
clutter is created because the source is not visible in that 
region, as the UGV is outside the horizontal spread of 
the floodlight. Ambient room lighting and reflections of 
the source from the laboratory walls are thus the only 
sources seen by the sensor.  

Figure 6 shows a frame from the animation gener-
ated with trajectory 13 at the point when the UGV has 
just reached that corner (for the 3rd time). While the 
algorithm is designed to operate in the presence of false 
detections, the sensor signals in this region contain 
clutter that exceeds the threshold value (related to  , as 
defined in Section 3.1). The clutter is spatially non-

Table 1: Trajectory characteristics (number of UGV-position and -orientation and source-bearing measurements acquired, 
standard deviation of trajectory path, mean distance from source, and fraction of time spent in the near-right corner) and 
BOT results for each trajectory (mean source-position errors, standard deviations of errors, and run time), averaged over 
1,000 runs of the BOT algorithm performed with 3,000 particles  

Traj. 
no. 

 

No. of 
measure-

ments 
 

Std. dev. 
of  

traj. in  
x-

direction 
(m) 

Std. dev. 
of  

traj. in  
y-

direction 
(m) 

Mean 
distance 

from 
source 
to traj. 
 (m) 

Std. dev. 
of distance 

from 
source to 

traj.  
(m) 

Fraction 
of time  
spent in 

near-right 
corner 

 

Mean 
source-
position 

error in x-
direction 

(cm) 

Std. dev. 
of 

estimate 
error in x-
direction 

(cm) 

Mean 
source-
position 

error in y-
direction 

(cm) 

Std. dev. 
of 

estimate  
error in y-
direction 

(cm) 

Mean 
absolute 
source-
position 

error 
(cm) 

Std. dev. 
of source-
position 

error 
(cm) 

Mean 
run-
time 
(s) 

7 99 1.564 1.063 2.437 0.877 0.11 4.8 3.5 1.9 8.5 5.1 4.5 4.1 

12 71 1.172 0.599 2.510 0.741 0.00 5.2 1.5 7.2 4.7 8.9 3.9 2.9 

4 82 1.368 0.865 2.306 0.729 0.20 11.6 4.0 0.3 6.3 11.6 4.0 3.3 

8 73 1.202 0.680 2.281 0.704 0.03 4.4 2.1 12.4 3.9 13.1 3.7 3.0 

9 77 1.258 0.611 2.153 0.613 0.08 9.6 1.9 10.0 3.7 13.9 3.0 3.1 

3 38 0.981 0.747 2.370 0.432 0.13 11.5 2.4 13.2 4.0 17.5 3.4 1.5 

6 45 1.327 0.555 2.449 0.583 0.00 3.1 2.5 19.4 4.2 19.6 4.2 1.8 

11 100 0.473 0.529 1.996 0.526 0.00 26.5 1.7 9.0 5.3 28.0 2.3 4.1 

5 44 1.236 0.562 2.291 0.536 0.09 21.9 6.7 24.3 5.2 32.7 5.9 1.8 

13 200 1.249 0.697 2.283 0.654 0.13 43.4 18.5 1.7 31.7 43.4 18.5 8.2 

2 32 0.999 0.717 1.988 0.883 0.00 23.6 2.6 42.9 7.5 48.9 6.7 1.3 

1 24 1.234 0.024 2.771 0.193 0.00 14.5 2.7 56.5 7.2 58.4 7.0 1.0 

10 25 0.450 0.490 2.086 0.477 0.00 30.2 3.0 68.8 10.5 75.1 9.7 1.0 

 



homogeneous and hence violates the assumptions of the 
Bernoulli PF implementation. Therefore, before the 
UGV leaves the near-right corner, the source-position 
estimate computed by the BOT algorithm migrates to a 
spot in the right-hand corner of the laboratory farther 
from the source. As the UGV proceeds along its path, 
the light source is again seen by the sensor, and the 
source-position estimate returns to a location close to 
the actual source. However, there are insufficient state 
updates for the 3,000-particle BOT algorithm to regain 
certainty about the source-position estimate. As shown 
in Table 1, approximately 13% of the samples taken 
during trajectory 13 are in the near-right corner, where 
the source intensity is negligible.  

Trajectory 4 is a similar rectangular path with the 
same starting position as trajectory 13. It places the 
UGV in the near-right corner for 20% of the sampling 
time; however, trajectory 4 ends where it starts, com-
pleting about two-thirds of the rectangular path shared 
by the trajectories after it passes through the near-right 
corner. The longer path (and greater number of state up-
dates) after the corner in which clutter predominates sig-
nificantly increases the certainty of the final source-
position estimate for trajectory 4, compared with trajec-
tory 13. The greater certainty is evidenced by the fact 
that the standard deviations of the x- and y-coordinates 
of the final source-position estimate for trajectory 4 are 
equal to ~20% of the values for trajectory 13.  

The final source-position estimate for trajectory 4 
is also significantly closer to the actual source location 
than is the estimate obtained with trajectory 13; how-
ever, this may be an artefact of the systematic error 
believed to be present in the data. The differences in the 
source-position estimates provided by different trajecto-
ries will be reconsidered if the experiment is repeated 
with more care to quantifying the UGV’s orientation.  

Random error associated with the orientation of 
the UGV may also significantly contribute to random 
error in the source-position estimates. The random error 
in the UGV-orientation measurement is exacerbated by 
the small spacing amongst the retro-reflective markers 
used to track the UGV as it moves through the experi-
mental space. If the experiments are repeated, the 
markers will be place farther apart.  

5.2 Effect of Number of Particles  

As noted previously, the BOT algorithm is implemented 
in a MATLAB script that uses as inputs previously rec-
orded time-histories of trajectory and light-sensor data. 
This post-processing permits an analysis of the BOT 
algorithm’s performance with different numbers of par-
ticles (N, defined in Section 3.2).  

Figure 7 shows the mean error in the source-posi-
tion estimate and the mean processing time for the algo-
rithm, obtained by processing the dataset acquired with 
trajectory 3 with 10 to 10,000 particles. For each differ-
ent number of particles employed in the PF, the results 
are averaged over 100 runs to reduce run-to-run varia-
tions created by the random functions in the algorithm.  

  When 300 particles are used, the results (a mean 
absolute source-position error of 17.9 cm with a stand-
ard deviation of 3.5 cm) are nearly identical to those 
obtained with 3,000 particles, shown in Table 1. Com-
putations with more than 300 particles do not signifi-
cantly reduce the error in the mean source-position esti-
mate: with 10,000 particles, it settles at a value just less 
than 17.5 cm with a standard deviation of 3.4 cm.  

In contrast, the mean run-time for the algorithm in-
creases rapidly as the number of particles increases. 
Because of the many transformations of two-dimension-
al matrices used in the BOT algorithm, the processing 
time is expected to be proportional to the square of the 
number of particles used. This is verified by fitting the 
mean run-time as a function of the number of particles 
with a 2nd-order polynomial. The coefficient of determi-
nation ( 2R ) for the fit, displayed in Figure 7, is greater 
than 0.999.  
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Figure 6: A frame from the MATLAB-generated anima-
tion during processing of data acquired with trajecto-
ry 13, with 3,000 particles used in the BOT algorithm 

False 
detections 

Figure 7: (a) Mean error in source-position estimate and 
(b) mean processing time of the BOT algorithm as func-
tions of the number of particles, averaged over 100 runs, 
for data captured with trajectory 3 
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5.3 Localisation-Error Distribution  

Varying numbers of runs of the BOT algorithm are also 
performed with the dataset obtained in trajectory 3 with 
a fixed number of particles (3,000), to examine the dis-
tributions of the errors in the x- and y-directions and of 
the total source-position error ( 22 yx DD ). The results 
give an indication of the effect of the random functions 
in the BOT algorithm, as they provide the only source of 
run-to-run variation.  

In the limit of a large number of runs, the errors in 
the x- and y-coordinates of the source-position estimate 
are found to have Gaussian distributions, even though 
the particles in the PF are not (strictly) independent and 
identically distributed. However, the non-linear depend-
ence of the total source-position error on the x- and y-
oriented errors produces a skew-normal distribution for 
the total error, as shown by the histograms in Figure 8 
for 1,000, 10,000, and 30,000 runs of the BOT algo-
rithm. This effect also leads to a small difference be-
tween the source-position error obtained from the means 
of the x- and y-coordinates of the source estimate pro-
duced during each run of the algorithm (17.5 cm, as 
shown for trajectory 3 in Table 1) and the mean of the 
total source-position error for each run (18.1 cm).   

6 Conclusion  

In this research, a Bernoulli PF-based BOT algorithm is 
tested by use of a simple experimental arrangement. The 
aim is to provide a proof-of-concept of the technique 
and real-world data against which it and similar local-
isation algorithms can be tested. A bright floodlight is 
used as the source (target) to be localised (tracked); and 
a circular array of photodiodes forms a sensor that 
measures the relative intensity of the light in a horizon-
tal plane, providing low-resolution bearing measure-
ments over 2π radians for input to the BOT algorithm. A 
radio-controlled UGV carries the sensor and is driven in 
a variety of simple trajectories, while a motion-capture 
(camera) system is used to record its motion.  

A Bernoulli PF is chosen because of its robustness 
to false detections and intermittent source loss; and the 
results presented in this paper demonstrate that the 
algorithm performs well, providing source-position 
estimates that are, on average, only 19 cm from the 
centre of the actual source. However, several limitations 
in the experimental arrangement are apparent. For 
example, the (flood)light source has a finite spatial 
dimension and provides a source signal over less than 
π radians, rather than being a point source with uniform 
intensity over 2π radians (an omnidirectional source), as 
is assumed by the BOT algorithm. This lack of omnidi-
rectionality requires that the sensor acquire signals ex-
clusively in front of the source, rather than circling it, 
which might be expected to improve localisation.  

Datasets obtained with thirteen different trajecto-
ries are processed with the BOT algorithm to assess its 
performance as a function of trajectory pattern. The 
source-position errors obtained in 1,000 independent 
runs for each trajectory are averaged to reduce the effect 
of randomness in the algorithm. The results indicate that 
most trajectories produce source-position estimates 
close to the actual source location, though an apparent 
systematic error in the UGV-orientation data makes a 
comparative analysis of the accuracy produced with 
different trajectories difficult.  

Low light-source levels in one corner of the exper-
imental space create false detections that the algorithm 
is unable to fully reject. For one trajectory (13), the 
presence of clutter produces large uncertainties in the 
final source-position estimate. During this trajectory, the 
source is lost when the UGV transits the area where 
clutter predominates. An estimate close to the actual 
source position is regained afterward, but the algorithm 
has an insufficient number of samples to arrive at a 
result with low uncertainty before the trajectory’s end.  

The mean source-position error is also assessed 
with different numbers of particles in the BOT algo-
rithm for a trajectory (3) that yields a mean source-
position estimate typical of the entire set. The results 
demonstrate that, above a certain number of particles 
(300), increasing the number provides little benefit, 
though it comes at the cost of higher processing time, 
which rises with the square of the number of particles.  

Finally, the effect of the random functions em-
ployed in the BOT algorithm is examined by processing 
the dataset acquired with the same trajectory in a large 
number of independent runs (up to 30,000). The error in 
the source-position estimate is seen to have a normal 
distribution about a mean very similar to that obtained 
with 1,000 runs. The standard deviation of the error dis-
tribution is found to be small compared with the size of 
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the light source, indicating that, for that particular tra-
jectory, a single run would likely yield a source-position 
estimate with a high degree of certainty.  

These findings suggest that real-time processing 
on-board an airborne or ground-based robot could yield 
source-position estimates with adequate accuracy and 
certainty. On-board processing could also enable a robot 
to autonomously manoeuvre in response to the feedback 
from the BOT algorithm and to thus improve its source-
position estimate. However, PF-based algorithms, in-
cluding the BOT algorithm tested here, are computa-
tionally demanding; and real-time processing can be 
performed by the Raspberry Pi minicomputer on-board 
the UGV used here only with small numbers of parti-
cles. The single trajectory examined in detail in this 
paper required just 300 particles to produce a source-
position estimate with a relatively high certainty; thus, it 
would have been possible to compute on-board the 
UGV at 5 Hz. However, other trajectories may require 
more particles to reach an acceptable level of certainty 
and thus may not be suitable for on-board processing.  

The simulated search-and-localisation mission pre-
sented here also indicates some of the other challenges 
associated with real-world applications of algorithms for 
source/target tracking. Given that the BOT algorithm 
can utilise measurements from a variety of source and 
sensor types (light, sound, chemical, radiation, thermal, 
etc.), this initial proof of concept suggests paths for 
future research on localisation of other source types of 
interest, including chemical, biological, and radiative 
sources in unknown environments.  
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