
Distributed Robotic Vision as a Service

William Chamberlain∗, Tom Drummond†, Peter Corke∗

ARC Centre of Excellence for Robotic Vision
∗Queensland University of Technology (QUT), Brisbane, Australia

†Monash University, Melbourne, Australia

Abstract

The vision sense of standalone robots is limited
by line of sight and onboard camera capabili-
ties, but processing video from remote cameras
puts a high computational burden on robots.
This paper describes the Distributed Robotic
Vision Service, DRVS, which implements an
on-demand distributed visual object detection
service. Robots specify visual information re-
quirements in terms of regions of interest and
object detection algorithms. DRVS dynami-
cally distributes the object detection compu-
tation to remote vision systems with process-
ing capabilities, and the robots receive high-
level object detection information. DRVS re-
lieves robots of managing sensor discovery and
reduces data transmission compared to image
sharing models of distributed vision. Navigat-
ing a sensorless robot from remote vision sys-
tems is demonstrated in simulation as a proof
of concept.

1 Introduction

Vision is a key sense for robotic autonomy and capabil-
ity, currently limited by line of sight, onboard cameras,
and onboard computing power. Robots can use visual
information from remote cameras and from other robots
to overcome the line-of-sight and camera capability lim-
itations. Existing robot middleware and cloud solutions
focus on passing raw image data and as a result place a
high computational burden on the robot.

Robotic vision is driven by the information require-
ments of a robot’s tasks. Middleware systems like the

∗ARC Centre of Excellence for Robotic Vision, Queens-
land University of Technology, Brisbane, Australia.
http://www.roboticvision.org {william.chamberlain, pe-
ter.corke}@qut.edu.au
†ARC Centre of Excellence for Robotic Vi-

sion, Monash University, Melbourne, Australia.
http://www.roboticvision.org tom.drummond@monash.edu

Figure 1: System overview: DRVS distributes requests
from robots to vision systems with the required field of
view, and robots receive processed visual information.

Robotic Operating System (ROS) [Quigley et al., 2009]

facilitate networking robotic system components to share
data between robots and sensors. A disadvantage of this
model for distributed vision is that the receiving robot
must accept the data that is made available to it and
process the data for its own purposes, which leaves the
robot with less computing power for other functions.

The contribution of this paper is the Distributed
Robotic Vision Service software framework, DRVS,
which implements distributed visual object detection as
a network service. Robots send object detection requests
to DRVS specifying the type of object detection required,
and DRVS distributes the requests to remote vision sys-
tems which perform the visual processing and send the
processed information to the robot. The computational
load is distributed to the vision systems, making dis-
tributed vision practical for robots with limited compu-
tation. The service is described in section 3.



This paper describes the architecture of DRVS and
demonstrates navigating a robot using vision from off-
board cameras in a simulated case study, showing that
DRVS

1. allows a blind robot to navigate by making use of
vision systems in its environment (section 4.1).

2. reduces the number of messages handled by robots
by directing requests to appropriate vision systems
(section 4.3).

3. manages sensor availability and coverage for robots
(section 4.3).

DRVS focuses on object detection as a vision function
which is widely applicable to many robot tasks, and is a
step toward a full distributed robotic vision service.

2 Related Work

Networked robots have the potential to use millions
of online vision systems which integrate camera sen-
sors with processing power and network connectivity as
sources of visual information.

Multi-view vision has been applied to create safe
and effective robot behaviours in human environments.
[Trautman and Krause, 2010] combine overhead vi-
sion and human behaviour prediction to plan efficient
and safe paths through crowds of moving people, and
minimal-disruption paths through office environments
are planned in [Piyathilaka and Kodagoda, 2014]. These
depend on distributed vision to gather positions and tra-
jectories of people which are not visible to the robot’s
onboard cameras.

There is no commonly-used system for robotic dis-
tributed vision, and existing frameworks have disadvan-
tages as services for distributed robotic vision. The
Continuous Analysis of Many CAMeras system (CAM2)
[Kaseb et al., 2014] demonstrates that low latency and
high scalability are achievable for a distributed video
processing architecture which processes video from dis-
tributed cameras on cloud infrastructure. CAM2 is in-
tended for human users and does not provide a program-
matic interface for robotic distributed vision.

Robotic middleware systems such as ROS [Quigley
et al., 2009], YARP [Metta et al., 2006], and Orca
[Makarenko et al., 2006] provide interoperability between
robotic systems components on heterogeneous platforms.
These middlewares do not have specific functions for dis-
tributed vision, but can provide the network communi-
cation mechanism for DRVS. Robots can offload high
computation and memory requirements to remote pro-
cesses through the robotics cloud platform provided by
Rapyuta [Mohanarajah et al., 2015], and can communi-
cate with other robots through the cloud. Distributed
vision is not a core function of Rapyuta and has to be

implemented with custom solutions, whereas DRVS pro-
vides a simple interface for distributed vision.

Distributed sensor systems often leave responsibility
for managing data about available sensors and data
feeds to the robot, rather than providing an abstrac-
tion which let the robot controller focus on the robot’s
core tasks. The SensorCloud system provides standard-
ised open specification for robots to discover sensors and
stored data in the robot’s region of interest [D’Este et al.,
2013]. SensorCloud provides current data feeds or his-
toric records from the open Sense-T sensor data network,
so robots cannot make request for sensors to gather data
on demand for real-time tasks.

Wireless communication between mobile robots and
remote cameras is limited by bandwidth and contention,
and by time and computing costs [Kassir et al., 2015].
Channel contention with even moderate concurrency in
wireless communication has been demonstrated to have
increased latency for robotic vision using web services
[Blake et al., 2011] and to prevent effective communi-
cation between mobile robots [Santos et al., 2010], but
there is less contention with smaller messages and lower
total throughput. Rapyuta has high bandwidth in the
cloud layer, but requires application-specific optimisa-
tions for some cooperative robotic tasks [Mohanarajah
et al., 2015]. Distributed vision systems become more
effective as they incorporate more robots and cameras,
and reducing message size by exchanging higher-level in-
formation will mitigate the channel contention.

Robots can use distributed vision to achieve safer and
more effective behaviour, and for behaviour not possible
using only onboard cameras. Wireless communication
limits the bandwidth available for sending distributed vi-
sion data to mobile robots, and existing robotic software
frameworks do not provide a distributed vision service
which abstracts sensor configuration and delivers visual
data on demand.

3 The Distributed Robotic Vision
Service Framework

Robots use DRVS to obtain visual information from re-
mote vision systems. The DRVS Server links robots to
vision systems as shown in Figure 2. This section details
the design and implementation of the DRVS architec-
ture, API, messages, and distributed vision process.

Robots send object detection requests to the DRVS
Server. An object detection request specifies the robot’s
region of interest, the algorithm and parameters that
vision systems should use to process the visual informa-
tion, and the network address on which the robot will
listen for object detection response messages.

The DRVS Server then forwards object detection re-
quests to vision systems. The DRVS Server maintains a
registry of vision systems and their fields of view. When



Figure 2: DRVS request and response processes.

it receives an object detection request from a robot the
DRVS Server searches the registry for vision systems
with fields of view that overlap the robot’s region of in-
terest, and forwards the object detection request onto
each of these vision systems (Algorithm 1).

Vision systems in DRVS combine a camera sensor with
processing and networking capabilities. The vision sys-
tems receive object detection requests from the DRVS
Server, and capture and process visual information to
detect objects using the algorithm specified in the re-
quest. DRVS is flexible for robots to specify their object
detection requirements, so DRVS does not prescribe pre-
defined object definitions. Vision systems parse the al-
gorithm parameter of object detection requests to deter-
mine which object detection algorithm and parameters
to apply. If the vision system detects one or more objects
it sends the object locations to the robot at the network
address specified in the object detection request. Finally,
the robot receives object detection responses from vision
systems and parses the algorithm parameter in each re-
sponse to determine which object type the vision system
has detected.

DRVS uses a global coordinate system. Vision sys-
tems are registered in the global coordinate system and
report object detections as object vertices or bounding
boxes in global coordinates. Robots specify their regions
of interest to the DRVS Server in the same coordinate
system.

Algorithm 1 DRVS Server - matching regions of inter-
est to vision systems

1: for vision system in registry list do
2: if field of view overlaps request location then
3: send DRVS request to vision system
4: end if
5: end for

Robots do not need to look up or discover vision sys-
tems to handle their object detection requests through
DRVS. Vision systems are registered with the DRVS
Server, and the DRVS Server determines which vision
systems can handle each request. The DRVS Server is
the only network address that robots use to make an
object detection request, as the robot does not initiate
communication with the vision systems. Changes to the
available set of vision systems are therefore transparent
to the robot.

3.1 Communication

DRVS performs distributed vision by communicating ob-
ject detection requirements and object detections be-
tween the system components in a process that requires
one-to-many messaging from the DRVS Server to vision
systems.

Publish-subscribe messaging systems such as ROS
topics allow a single component to publish data to many
subscribing components. Client-server messaging sys-
tems such as ROS services have a one-to-one communi-
cation between the client and server in which the client
makes a request and the server responds. DRVS is a
framework for distributed vision which allows a single
client to send its requirements to an unknown number
of vision systems, with variable network and processing
latencies for each response, and requires a different ap-
proach to either publish-subscribe or client-server.

DRVS uses ROS services for communication. DRVS
does not depend on a specific aspect of ROS services.
Other networked point-to-point communications would
work as well, but ROS was selected for the communica-
tion layer for ease of use and integration, with implemen-
tations in C++, Python, Java, and LUA, and integration
in MATLAB and VREP. DRVS can leverage the popu-
larity of ROS for rapid integration with ROS-compatible
robots and systems through its ROS API.



Figure 3: Message format definitions (left), and exam-
ples of specific message instances (right).

The DRVS request and response process consists of a
sequence of ROS service calls over TCP/IP. The request
comprises a service call from the robot to the DRVS
Server, and a service call from the DRVS Server to each
of several vision systems. The DRVS response process
comprises one or more service calls from vision systems
to the robot’s callback service. Each ROS service call
has its own request and response, but in DRVS only
the request part carries information and the response
is a simple acknowledgement which terminates the call.
Each service call functions as a unidirectional message
and DRVS uses sequences of these to create one-to-many
and many-to-one messages.

The robot’s perception component is a client of the
DRVS Server, making requests for information about ob-
ject types in regions of interest. Vision systems receive
DRVS requests through a daemon process which waits
for communication from the DRVS Server (Figure 4).
The vision system parses the object type and robot call-
back address from the DRVS request, starts the visual
information capture and processing, and finally sends
object detection data to the robot callback address. The
robot’s perception component parses incoming DRVS re-
sponses from vision systems and updates program state
to notify the robot controller of the objects detected.

3.2 API

The DRVS API is focused on object boundary detection
in global coordinates, with a flexible object description.
The robot uses DRVS through the DetectObjectBound-
ary and CallbackCoordinates services.
DetectObjectBoundary defines the DRVS request inter-
face and has as parameters the

- object detection algorithm and parameters as a string
- region of interest bounding box coordinates
- robot CallbackCoordinates ROS service name

CallbackCoordinates defines the DRVS response inter-
face and has as parameters

- the object detection algorithm and parameters
- an array of object detection coordinates

RegisterVisionService defines vision system registration
interface and has as parameters the

- vision system ROS name for DetectObjectBoundary
ROS service names are unique identifiers for each ROS

service instance, analogous to web service URIs.
Vision systems integrate into DRVS to provide dis-

tributed vision services by implementing the DetectOb-
jectBoundary interface to accept DRVS requests, and the
CallbackCoordinates interface to call back to the DRVS
robot client with object detection data.

Robots can use DRVS services by implementing the
DetectObjectBoundary interface to make requests to the
DRVS Server, and implementing the CallbackCoordi-
nates interface to receive information from DRVS vision
systems.

3.3 The DRVS Server

The DRVS Server is a central standalone process with
two roles

1. mapping the regions of interest of robot requests
to vision system observable areas and forwarding
DRVS requests to the vision systems

2. managing the vision system registry and registering
vision systems

Figure 4: Vision System components and control flow
during visual processing.



Figure 5: Vision system registration with the DRVS
Server.

The DRVS Server maintains the registry of vision sys-
tems used in the DRSV request process. A registry entry
contains the coordinates for the bounding box of the vi-
sion system’s field of view and the unique ROS service
name of the vision system.

Vision systems that implement RegisterVisionService
(Figure 5) can register with the DRVS Server.

If a vision system is repositioned or moves such that
its observable area changes, the new observable area is
registered with the DRVS Server. The DRVS Server will
forward requests for the new observable area to the vision
system without interruption.

3.4 The DRVS Distributed Vision Process

The vision process in DRVS is initiated by a robot mak-
ing a request to the DRVS Server, which forwards the re-
quest to appropriate vision systems. The vision systems
perform the visual processing specified in the request,
and send the processed visual information back to the
robot.

A robot requests object detection in a region of in-
terest from the DRVS Server as shown in Figure 2 and
Figure 3. The algorithm parameter of the request spec-
ifies the object detection algorithm and parameters to
the vision system. The DRVS Server matches the region
of interest specified in the request to the vision systems
in the registry, and forwards the requests following the
DRVS process. The vision systems parse the algorithm
parameter into the algorithm and parameters parts, in-
terpret the parameters based on the algorithm, and per-
form the corresponding visual processing.

4 Case Study

The following case study demonstrates the features of
DRVS in three simulated scenarios, based on a mobile
robot using DRVS as its sole source of information for
localisation and navigation while attempting to reach
its recharging station. These scenarios show that DRVS
allows robots to access sensors that the robot does not

Figure 6: The blind robot case study. The robot is on
the left in the field of view of vision system 2, and the
charging station is on the right in the field of view of
vision system 1.

carry, with on-demand processing in the remote vision
system, and without the robot performing any visual
processing on the returned data.

For this case study the robot is assumed to be effec-
tively blind (due to sensor failure, for example), and
capable of using the global coordinate system used by
DRVS and the vision systems. The case study is simu-
lated in VREP, a commonly-used robotics and automa-
tion tool.

Figure 6 shows the environment for the location and
planning scenario of this case study. The robot is on the
left of the scene at (83,265) in the 2D world coordinate
system, and the blue rectangle on the right at (590,355)
represents the charging station. The vision systems are
shown as yellow cubes, mounted high and viewing the
scene from overhead, as is common for security camera
views of rooms and corridors. Vision system 2 is centred
above (205,205) with the robot’s initial position in view,
and vision system 1 is centred above (485,278) with the
charging station in view; neither vision system can view
both objects.

Object detection is simplified to polygon detection
with colour segmentation for this case study. The robot
specifies the class of object as a colour model which is
parsed into the minimum and maximum RGB thresh-
olds for colour segmentation. D* [Stentz, 1994] is used
for path planning.

This case study does not address the issues caused
by non-orthogonal objects occluding space, or unknown
object size, which are limitations of the information ob-
tainable from a single camera. The bounding boxes of all
detected objects are reported as perceived by the cam-
eras assuming projection on the ground plane.



Algorithm 2 Blind robot navigation

1: procedure Robot Perception
2: call DRVS (selfColourModel) . robot
3: call DRVS (stationColourModel) . goal
4: repeat
5: if goal and start are known then
6: plan path
7: else
8: repeat requests
9: end if

10: until timeout
11: end procedure
12: procedure Robot DRVS callback
13: if model = stationColourModel then
14: goal← location
15: else if model = selfColourModel then
16: start← location
17: end if
18: end procedure
19: navigate from robot location to target location

4.1 Locatisation and Planning

Localisation is a key function for autonomy and this sce-
nario demonstrates a sensorless robot using DRVS object
detection to locate itself and its goal.

The robot perception component makes requests to
the DRVS Server to locate the robot and charging sta-
tion goal in the scene shown in Figure 6, as shown in
Algorithm 2. The object description is a colour model.

The key points in this scenario are

1. all computation for visual processing is distributed
to the remote vision systems. The robot cannot

Figure 7: Objects detected with DRVS, and the planned
path in the location and planning scenario 4.1. The
robot is at (90,260) and the goal at (590,350).

perform any visual processing in this case study be-
cause it does not receive any pixel data from the
scene either directly or via DRVS.

2. the robot navigation system needs object boundary
information to create a map for planning with D*,
and DRVS provides distributed object detection ser-
vices, so the robot uses the high-level information
obtained through DRVS to carry out its tasks with-
out onboard visual processing.

3. the robot’s request determines the visual processing
scheduled and performed by the vision systems.

4. the robot can determine both object location and
object type from the vision system responses even
though information may be received out-of-order by
the robot-side Callback Coordinates server compo-
nent.

5. the robot does not have to perform sensor discovery
or be configured with information about available
sensors.

4.2 Static and Dynamic Obstacles

Scenario 4.1 is extended to the robot localising itself,
its goal, and static and dynamic obstacles. The robot
perception component uses DRVS to locate obstacles by
making DRVS object detection requests with obstacle
colour models as shown in Algorithm 3, and the robot
plans and navigates a path to the goal (Figure 8).

The key point in this scenario is that the new param-
eters specified by the robot perception module change
the visual processing carried out by the remote vision
systems, rather than the vision system implementation
and configuration being changed to accommodate the
new object classes. This demonstrates that the visual
processing is flexible and determined by the robot re-
quirements. Algorithm 3 is an extension of Algorithm 2
with the additional object colour models and re-planning
if the mapped obstacles change.

This scenario also demonstrates the robot controller
interacting with DRVS to monitor the environment
for changes during navigation, and to re-plan when
the planned path to the charging station becomes ob-
structed.

For a dynamic environment the robot makes repeated
object detection requests during navigation and can re-
plan its path in response to changes in obstacle loca-
tions. In this scenario an obstacle moves to obstruct the
planned path (Figure 9), and the robot re-plans to find
a path around the obstruction (Figure 10).

The dynamic obstacle detection and path re-planning
are shown in Figure 10. The initial path is in blue and
passes between the static obstacles along y=260. The
robot starts at (80,300), and is at (280,360) when it de-
tects the dynamic obstacle and the path is re-planned.



Figure 8: Navigation between static obstacles. The
robot trajectory to the charging station is shown in red.

Figure 9: The dynamic environment scene with the red
dynamic obstacle following its path across the robot’s
planned path.

The new path is shown in orange and passes around the
obstacles along y=450.

4.3 Selectivity

This scenario demonstrates the DRVS Server mapping
the DRVS requests to a subset of the available vision
systems in response to the robot limiting the region of
interest of its object detection requests.

The environment in this scenario is extended to a
larger area with four vision systems (Figure 11). The
robot addresses its initial requests to locate itself and
the charging station in the entire floor area. It only re-
ceives responses from the vision systems that detect each
object; vision system 2 for the robot and vision system
1 for the charging station. Vision systems 3 and 4 do
not respond because they do not detect any objects of

Figure 10: Path re-planning in response to a dynamic
obstacle in scenario 4.2.

Algorithm 3 Blind robot navigation - with obstacles

1: procedure Robot Perception
2: call DRVS (selfColourModel) . robot
3: call DRVS (stationColourModel) . goal
4: call DRVS (obstacleColourModel) . obstacles
5: call DRVS (humanColourModel) . obstacles
6: end procedure
7: procedure Robot DRVS callback
8: repeat
9: if model = stationColourModel then

10: goal← location
11: else if model = selfColourModel then
12: currentposition← location
13: else if model = obstacleColourModel then
14: obstacle← location
15: else if model = humanColourModel then
16: obstacle← location
17: end if
18: if obstacle map changed then
19: re-plan path
20: end if
21: until timeout
22: end procedure
23: navigate from robot location to target location

the types requested. To reduce the size of the map used
for planning, the robot only requests the locations of ob-
stacles in an area bounded by the locations of the robot
and the charging station. The DRVS Server matches
this region of interest to vision systems 1 and 2, exclud-
ing vision systems 3 and 4 from the distributed vision
request.

The key points in this scenario are that

1. the object detection request is only forwarded to



vision systems with fields of view overlapping the
robot’s region of interest

2. the robot only receives responses from vision sys-
tems which detect objects, reducing the number of
messages it has to handle and the volume of network
traffic.

3. the number, type, and observable areas of the vision
systems are transparent to robots using DRVS. The
DRVS Server is responsible for these considerations
when it maps DRVS requests to vision systems, and
the configuration information is maintained through
the vision system registration process. The robot is
relieved of responsibility for managing up-to-date
vision system configuration information.

4.4 Computation and Data

The following comparison calculations are made between
DRVS, a distributed vision service transmitting single
raw images on demand from remote vision systems to
robots, and a service transmitting compressed video.
The calculations are for one round of vision with each
robot in a scenario accessing each vision system for one
image, or one second of video.

Each DRVS request and response consumes less than
0.2 kB. The following calculations assume distributing
raw visual data from a VGA 800×600 pixel source with
each image compressed to 70 kB using the ROS JPEG
compressed image transport at 80% quality, and stream-
ing video compressed to 112kBs−1 using ROS Theora.
Optimal communication with no data loss is assumed.

Table 1 shows that DRVS has a significant advantage
over distributed vision services which transmit image
data to robots, due to the lower computational loads
placed on robots and the total bandwidth required to

Table 1: Comparison of transmitted data and data re-
ceived per robot between DRVS and a system distribut-
ing image data for a single frame, or for one second.

transmit data. The robots receive significantly less data
that they have to process, and the computation advan-
tage will translate to significant power consumption ad-
vantages in mobile robots. The lower transmitted data
makes DRVS less vulnerable to wireless contention, and
further reduces power consumption.

5 Discussion

The case study scenarios presented in this paper use a
simple object detection algorithm to focus on the design
of DRVS. Specifying the object detection algorithm as a
string parameter provides flexibility despite DRVS’ sim-
ple service API, but the robots and vision systems using
DRVS need a shared set of algorithm definitions to parse
the parameter, and these algorithm definitions also form
part of the API. Standardised representations such as
those being developed by the IEEE-RAS Ontologies for
Robotics and Automation working group [Schlenoff et
al., 2012], may be used to extend the object algorithms
defined for DRVS.

Using ROS services limits DRVS to robots, vision sys-
tems, and DRVS Server connected to the same ROS
network. DRVS could be extended to use non-ROS
web services or a similar remote procedure call proto-
col, with each entity identified by its IP address-based
service URIs, and the DRVS Server using a standardised
public URL.

The current version of DRVS assumes a single coordi-
nate system for all robots and vision systems. This is a
constraint that will be relaxed in future work.

6 Conclusion

DRVS is a step toward a full distributed vision service,
and toward robots which can use information from mul-
tiple views to overcome the line-of-sight limits on robotic
vision, without prohibitive computational burden on the

Figure 11: The selective vision system scenario. Vision
systems 1 and 2 have the charging station and robot in
view, while the fields of view of vision systems 3 and 4
are not on the robot’s path.



robot, and without overwhelming wireless communica-
tions by streaming raw visual data.

DRVS implements a service for robots to specify their
object detection requirements, and the DRVS Server
communicates the requirements to remote vision systems
which perform the object detection processing on de-
mand. Computation is distributed to the remote vision
systems and the robot receives only the processed high-
level information, reducing the quantity of data trans-
mitted and also reducing the processing load on the
robot. Discovery of remote vision systems is handled dy-
namically by the service and is transparent to the robot.

The system is demonstrated in simulation, navigat-
ing a blind robot in scenarios with static and dynamic
obstacles, and with selection of vision systems with ap-
propriate fields of view.

Acknowledgments

This research was supported by the Australian Research
Council Centre of Excellence for Robotic Vision (project
number CE140100016).

References

[Blake et al., 2011] M. Brian Blake, Sekou L. Remy,
Yi Wei, and Ayanna M. Howard. Robots on the web.
Robotics & Automation Magazine, IEEE, 18(2):33–
43, 2011.

[D’Este et al., 2013] Claire D’Este, Chris Sharman, Ri-
taban Dutta, Ahsan Morshed, Jessica Lethbridge,
Andrew Terhorst, Ben Howell. Sustainability, Scala-
bility, and Sensor Discovery with Cloud Robotics. In
Proceedings of the Australian Conference on Robotics
and Automation, Sydney, Australia, December 2013.

[Kaseb et al., 2014] Ahmed S Kaseb, Everett Berry,
Youngsol Koh, Anup Mohan, Wenyi Chen, He Li,
Yung-Hsiang Lu, and Edward J Delp. A system for
large-scale analysis of distributed cameras. In IEEE
Global Conference on Signal and Information Pro-
cessing, 2014.

[Kassir et al., 2015] Abdallah Kassir, Robert Fitch, and
Salah Sukkarieh. Communication-aware information
gathering with dynamic information flow. The In-
ternational Journal of Robotics Research, 34(2):173–
200, December 2015.

[Makarenko et al., 2006] Alexei Makarenko, Alex
Brooks, and Tobias Kaupp. Orca: Components for
robotics. In International Conference on Intelligent
Robots and Systems (IROS), pages 163–168, 2006.

[Metta et al., 2006] Giorgio Metta, Paul Fitzpatrick,
and Lorenzo Natale. YARP: yet another robot plat-
form. International Journal on Advanced Robotics
Systems, 3(1):43–48, 2006.

[Mohanarajah et al., 2015] Gajamohan Mohanarajah,
Dominique Hunziker, Raffaello D’Andrea, and
Markus Waibel. Rapyuta: A Cloud Robotics
Platform. Automation Science and Engineering,
IEEE Transactions on, 12(2):481–493, April 2015.

[Piyathilaka and Kodagoda, 2014] Lasitha Piyathilaka
and Sarath Kodagoda. Active visual object search
using affordance-map in real world: A human-centric
approach. In Control Automation Robotics & Vision
(ICARCV), 2014 13th International Conference on,
pages 1427–1432. IEEE, 2014.

[Quigley et al., 2009] Morgan Quigley, Ken Conley,
Brian Gerkey, Josh FAust, Tully Foote, Jeremy
Leibs, Eric Berger, Rob Wheeler, and Andrew Mg.
ROS: an open-source Robot Operating System. In
Proceedings of the Open-Source Software workshop
of the International Conference on Robotics and Au-
tomation (ICRA), 2009, 3:5, 2009.

[Santos et al., 2010] Frederico Santos, Lúıs Almeida,
Luis Seabra Lopes, José Lúıs Azevedo, and
M Bernardo Cunha. Communicating among robots
in the robocup middle-size league. In RoboCup
2009: Robot Soccer World Cup XIII, pages 320–331.
Springer, 2010.

[Schlenoff et al., 2012] Craig Schlenoff, Edson Prestes,
Raj Madhavan, Paulo Goncalves, Howard Li,
Stephen Balakirsky, Thomas Kramer, and Emilio
Miguelanez. An IEEE standard ontology for robotics
and automation. In Intelligent Robots and Systems
(IROS), 2012 IEEE/RSJ International Conference
on, pages 1337–1342. IEEE, 2012.

[Stentz, 1994] Anthony Stentz. The D* Algorithm for
Real-Time Planning of Optimal Traverses. Technical
report, DTIC Document, 1994.

[Tenorth et al., 2013] Moritz Tenorth, Alexander
Perzylo, Reinhard Lafrenz, and Michael Beetz. The
RoboEarth language: Representing and exchanging
knowledge about actions, objects, and environments.
In Proceedings of the Twenty-Third International
Joint Conference on Artificial Intelligence (IJCAI),
pages 3091–3095, 2013.

[Trautman and Krause, 2010] Peter Trautman and An-
dreas Krause. Unfreezing the robot: Navigation in
dense, interacting crowds. In The IEEE/RSJ 2010
International Conference on Intelligent Robots and
Systems (IROS 2010) , pages 797–803. IEEE, 2010.


