One Robot, Eight Hours, and Twenty Four Thousand People

Feras Dayoub, Timothy Morris, Ben Upcroft and Peter Corke
CyPhy Lab, Queensland University of Technology
firstname.lastname@qut.edu.au *

Abstract
This paper presents an account of an autonomous mobile robot deployment in a densely crowded public event with thousands of people from different age groups attending. The robot operated for eight hours on an open floor surrounded by tables, chairs and massive touch-screen displays. Due to the large number of people who were in close vicinity of the robot, different safety measures were implemented including the use of no-go zones which prevent the robot from blocking emergency exits or moving too close to the display screens. The paper presents the lessons learnt and experiences obtained from this experiment, and provides a discussion about the state of mobile service robots in such crowded environments.

1 Introduction
When moving from datasets and structured static environments to the real world, one of the main challenges facing autonomous robots is the unpredictability of the continuous change in the appearance and structure of their surroundings. This means a set of parameters which produces good results for one scenario inside one environment is not guaranteed to produce the same results when the scenario or the environment is changed.

Current state-of-the-art methods to tackle the problems of mapping, localizing, navigating and planning by mobile robots have been shown to produce desirable and promising results when dealing with each of these problems individually. However, there are few mobile robots which are able to demonstrate long-term autonomy using all these methods together while operating unsupervised in a real-life environment. One example of such an environment is a public event. The main characteristic of these events is that they are densely crowded most of the time which introduces a new set of challenges for mobile robots.

To demonstrate the above points and to highlight the main challenges of operating in a crowded environment, a set of state-of-the-art methods for mapping, localization and path planning has been used to enable a mobile robot to perform a cyclic delivery task with automatic re-charging during a crowded public event. The event was Robotronica, the first public robotics exhibition in Australia which took place at the Queensland University of Technology on 18 August 2013 and drew around 24,000 people.

This paper presents some of the lessons learnt from this experiment which includes the following:

- No personal space: in a crowded environment, people tolerate shared personal space and they expect the same from the robot.
- No-Go zones are an essential requirement for safety purposes: although they appear free in the map, the robot should not execute a plan through certain places (e.g. near emergency exits).

*This research was supported under Australian Research Council’s Discovery Projects funding scheme (project number DP110103006).
• Strict obstacle avoidance is not always a good thing because it prevents the robot from flowing with the crowd.
• Localization failures are likely: when people surrounding the robot from all directions move with the robot, localization failure is very likely to happen.
• Massive touch screens that operate on infrared (IR) are invisible to IR emitting RGBD cameras.

A video of the robot operating in this environment, and the robot’s sensory data, are shown in the video available at https://www.youtube.com/watch?v=ZJgDB3nu4zs.

The rest of the paper is organized as follows. In Section 2, we review previous work in deploying autonomous robots in public places. Section 3 provides our experience and the lesson learnt from it. Finally we draw conclusions in Section 4.

2 Robots in the real world

Over the past years, several long-term experiments with mobile robots have been conducted in public places. The earliest examples are the museum tour guides RHINO [Burgard et al., 1998] and MINERVA [Thrun et al., 1999] which appeared in 1998. These robots were equipped with an accurate occupancy grid map of the obstacles in their environments and were required to operate and interact with people visiting the museum. In a confined environment, these robots operated for seven days covering 19 km and two weeks covering 44 km.

Soon after, the Mobot Museum Robot Series [Nourbakhsh et al., 2003] appeared where a number of robots were deployed for five months in a public museum. These robots were able to autonomously navigate for days at a time with automatic re-charging. The Mean Time Between Failure (MTBF) was reported to be between 72 and 216 hours. However, in order to simplify the navigation task and achieve such long-term autonomy, artificial landmarks were installed in the environment and also the existing infrastructure on the ceiling was used for localization with the advantage of being always observable.

Another example of robots operating as tour guides are the RoboX robots [Siegwart et al., 2003]. Around 10 robots were deployed during The Swiss National Exhibition’02 to guide visitors. The MTBF reported from the experiment was 3.26 hours per robot corresponding to an average of 216 hours. However, in order to simplify the navigation task and achieve such long-term autonomy, artificial landmarks were installed in the environment and also the existing infrastructure on the ceiling was used for localization with the advantage of being always observable.

Another example is Visual teach and repeat robots [Furgale et al., 2010]. While driving along a route to capture a set of stereo images. The images are used to build topologically-connected submaps. A path following procedure is done on non-planar terrain, which is handled by switching from localization in three dimensions, to path following in two dimensions using a local ground plane associated with each submap. In one experiment the robot covered a distance of 32 km while autonomous driving in an urban environment.

Another example is the DARPA Challenges for self-driving ground vehicles. Robots such as Junior [Monte-
merlo et al., 2008], BOSS [Urmson et al., 2008] and Stanley [Thrun, 2006] have demonstrated robust autonomous navigation through desert and urban areas.

Very recently, the Obelix robot [Kümmerle et al., 2013] demonstrated long range navigation inside a city environment. The robot travelled 3.3 km using local occupancy grids generated from laser scans stored in the nodes of a pose-graph. The pose-graph was created prior to navigation by driving the robot manually. The authors report three instances where human intervention was required and one instance where the emergency stop was activated. The robot used three laser range finders with one mounted downwards to sense the surface directly in front of the robot and the other two were mounted horizontally on the front and back of the robot. GPS was also used for global localization.

In all the above examples the robot was deployed in a relatively open place where it operates around a sparse presence of people. Whereas in this experiment, the robot is deployed in a densely crowded environment which for the best of our knowledge is the first to be tested.

3 Our experience

3.1 The platform

Our experimental platform is a MobileRobots’ Research GuiaBot shown in Fig. 2. The sensors used during this experiment were a laser range finder, a RGBD camera (XBOX 360 Kinect) and a sonar. The robot has three on-board computers all running ROS (Robot Operating System).

The GuiaBot normally inhabits a quiet environment on a research floor, level 11 of the S-Block in QUT gardens point campus. During operating hours, the robot roams the floor greeting students with its smiley face and automatically recharging when the battery level drops. Fig 2 shows the robot in S-Block. People in this environment are robot savvy: academics, postgraduate students and final year students in the robotics, aerospace and Mechatronic disciplines.

The robot normally serves as a testbed for our work on lifelong autonomous vision-based navigation [Dayoub et al., 2013]. Navigation challenges include low light levels, long sections of texture free walls and glass walls. On average, the robot covers 2.8 km per day.

In order for the robot to be able to operate in this space we had to convince ourselves and the university that it was safe to do so. This was challenging since there are no health and safety precedents for long-term unattended operation of robots on campus, and several recent (non robotic) health and safety incidents exacerbated the university’s concern. Our major consideration has been to stop the robot escaping via the lift or via the stairs, the latter being catastrophic for the robot and also very dangerous for anybody on the stairs. We modified the environment with magnetic strips beneath the carpet and retroreflective tape on the ceiling in areas around the lift, the stairwell and the firedoors. A hall effect sensor underneath the robot and an industrial
retroreflective tape sensor provide redundant means of emergency stopping the robot, and it requires a key to restart. The robot also has bump sensors at the base and on its sides as well as a number of emergency stop buttons. A large poster in the lift lobby serves to educate people about the robot and the safety issues.

3.2 Robotronica in brief

We had around 8 weeks notice for getting this robot ready for the Robotronica event. We wished to change as little software as possible but the environment had a number of challenges. Fig. 3 shows part of the exhibition floor where the robot operated. This floor contains over 40 multi-touch screens facing a large lounge area containing tables and chairs and glass walled classrooms. While the robot deals well containing tables and chairs and glass walled classrooms. While the robot deals well with glass walls in its normal environment, the large video displays confound the vision-based map building and obstacle detection since the static world assumption is violated.

To achieve robust localization and reliable obstacle detection we reactivated the laser scanner and generated a laser based occupancy map of the exhibition floor using GMapping [Grisetti et al., 2007]. For localization, the robot uses AMCL, an adaptive particle filter localizer [Fox, 2001] provided in ROS. The state-of-the-art navigation method used in this paper is provided by the ROS navigation stack (www.ros.org/wiki/navigation). The navigation method consists of a global and a local planner. The global planner generates the complete path to a goal using an Dijkstra algorithm. The local planner is seeded by the global plan and generates velocity commands to control the robot. For further information see [Marder-Eppstein et al., 2010]. Finally, for reliable obstacle detection, the laser scans were augmented by 3D data from a Kinect sensor as described below.

The robot was given a bank of delivery goals and was required to cycle between them. When the battery charge level drops below a predefined threshold, the robot discards its current delivery goal and moves back to the charging station to dock autonomously. During the experiment day the average minimum distance to obstacles was 0.67 m after navigating a distance of 987 m with 293 m resulting from the robot spinning on the spot due to the crowd blocking its path.

The following sections present some of the interesting observations we obtained from deploying the robot in this crowded environment.

3.3 Personal space

It is straight forward to prevent the robot from colliding with a person but it is much harder to stop people from colliding with the robot. This happens especially when the robot is operating in a crowded area. The robot uses sonar to detect people when it backs away from its charging dock, but people are less careful when moving backwards — in one instance on the day a child walked back-
Figure 6: The full map of the floor where the robot has operated. The red region is the obstacles surrounding the robot due to the crowd. The areas contained by the black line are the no-go zones with part appearing as obstacles. The blue dot is the location of the robot. Please see the attached video of the robot in action.

wards into the robot while backing away from a touch screen.

In a crowded environment, people tolerate the invasion of their personal space. According to [Edward, 1966] who introduced the concept of personal space, the average personal space in a western culture is 60 cm on either side, 70 cm in front and 40 cm behind. Fig. 4 shows the accumulated obstacles in a 6×6 m2 area around the robot expressed as a heat map of cells sized 10×10 cm2. The figure shows the tendency of people to stand in clusters in front of, and to each side of, the robot and within its personal space.

However people accept that in crowded places this space can be shared and they expect the same would apply to the robot. This means a fixed buffer zone to obstacles in densely crowded environment will slow down the robot and prevent it from flowing with the crowd. Having the robot stop when surrounded is actually unhelpful, in fact in a crowd situation the robot should be attempting to match velocity with the surrounds rather than maintaining free space.

3.4 Human reaction to the robot

We observed fearless interaction of people, especially children, with the robot. Children climbed on the robot and typed on the keyboard. One thing that surprised us was that many people recognized the Kinect sensor on the robot and began gesturing at it, Fig. 5 shows a typical reaction to seeing the Kinect on the robot. All this made navigation at some point very challenging. A close examination of Fig. 4 reveals a slight increase in obstacle concentration in the right front side of the robot compared to the left front side. In fact, in a 0.7 m range around the robot, the right front side was 39.0% occupied on average over the course of the day whereas the left front side was 28.9%. This might be the result of people waving to the Kinect using their right hand which leads them to stand on the right hand side of the robot.

The robot carried a static picture of a smiley face on its forward facing screen. People expected a reaction if they blocked the path of the robot for a relatively prolonged period of time, that is, they expected the face to change expression to upset or angry. We are currently working on making this happen, where the state of the robot will be reflected on the screen by an animated face capable of a limited set of expressions.

3.5 No-Go zones

When deploying the robot in a public place, there are certain areas where the robot should not go for safety and operational reasons. For Robotronica we wanted to ensure the robot kept clear of the touch screen walls to avoid any possibility of damage. A naive solution is to create no-go zones by amending the occupancy map and making these areas ‘occupied’. While this prevents the global planner from creating a global path through the no-go zones, the local planner attempts to find shortcuts through unoccupied space and could create a local plan which steers the robot through the no-go zone. Amending the map also has a negative effect on the localization performance since the obstacles in the map are never seen by the sensors.

We found that it was better to cover the no-go zones in the map with virtual obstacles in the form of 3D point clouds and use these clouds as an input to the obstacles cost map. In this case the local planner always steers the robot away from the no-go zones even if the global plan goes through them. Fig. 6 shows part of the no-go zone in the obstacles cost map.

3.6 Effective obstacle avoidance

The environment is problematic due to the presence of many glass walls and the fact that the video walls sit on a cage-like structure which allow laser scans to pass right through. We therefore augmented the laser scan data with an RGBD pseudo scan. This was achieved by taking an average horizontal slice out of the RGBD point cloud and selecting the closest points from the laser and the point cloud to create a new scan that was used for obstacle avoidance.

We found that strict obstacle avoidance is not always a good thing because it prevents the robot from flowing with the crowd. One possible solution for such a problem
is to make the range of obstacles a function of the robot’s speed and the direction of the movement of obstacles surrounding it. When the robot is moving very slowly with the crowd, a very short range of obstacles is allowed so the robot can move. This means that the robot needs to distinguish between moving obstacles that are in a collision course and obstacles that are flowing with it.

3.7 Localization failures

In a crowded environment there will be prolonged periods of time where the robot is surrounded from directions by people who also move with the robot. This means that localization failure is very likely to happen. One solution to such a problem is the use of landmarks on the ceiling given that the robot is operating indoors and the ceiling has a useful structure for localization.

Although the robot could globally re-localize when out of a crowded region, there is a great risk that it might be in a no-go zone. One possible solution for such a problem is to inflate the virtual obstacles located over the no-go zones according to the uncertainty of the robot pose estimation.

3.8 Touch screens emit infrared light

We found that some touch screens that operate on infrared (IR) are invisible to IR emitting RGBD cameras as shown in Fig. 7. This case re-emphasizes the importance of using passive sensors instead of active ones and demonstrate a case where a stereo vision sensor can outperform an RGBD camera.

4 Conclusions

This paper presented an account of our experiences in deploying an autonomous mobile robot in a densely crowded public event. A laser based occupancy map of the floor of the exhibition was used for localization and path planning. Over the course of an eight hour day the robot undertook a delivery task between a number of locations and recharged itself as required through automatic docking. Over the day the robot was visited by many of the 24,000 people attending the event and operated reliably and safely. Our main observation was that in a densely crowded environment the robot will not have its normal personal space or safety zone. In these situations people use and share their personal space and they expect the same from the robot. Therefore a strict obstacle avoidance strategy can lead to the robot being stationary and safe most of the time. A better strategy is to flow with the crowd and tolerate people in close vicinity when moving at a low speed.

We were also surprised (and heartened) at the expectations of the public to the robot. They are in no way fearful of the robot, they trust it to not collide with them, they expect it to have expressions and emotional states, and to respond to gestures. Hollywood is doing a great job of conditioning people about robots, the challenge for roboticists is to deliver.

References

[Dayoub et al., 2013] Feras Dayoub, Timothy Morris, Ben Upcroft, and Peter Corke. Vision-only autonomous navigation using topometric maps. In In

