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Abstract 

This paper presents a novel technique for 
performing SLAM along a continuous trajectory 
of appearance. Derived from components of 
FastSLAM and FAB-MAP, the new system 
dubbed Continuous Appearance-based Trajectory 
SLAM (CAT-SLAM) augments appearance- 
based place recognition with particle-filter based 
‘pose filtering’ within a probabilistic framework, 
without calculating global feature geometry or 
performing 3D map construction. For loop 
closure detection CAT-SLAM updates in 
constant time regardless of map size. We evaluate 
the effectiveness of CAT-SLAM on a 16km 
outdoor road network and determine its loop 
closure performance relative to FAB-MAP. 
CAT-SLAM recognizes 3 times the number of 
loop closures for the case where no false positives 
occur, demonstrating its potential use for robust 
loop closure detection in large environments. 

1 Introduction 

The future capabilities of mobile robots depend strongly on 
their abilities to navigate and interact in the real world. A 
key requirement for navigation is an internal representation 
of the environment that the robot inhabits. Autonomous 
robot navigation has been a major topic of robotics 
research for the past two decades, and is commonly 
referred to as the Simultaneous Localisation and Mapping 
(SLAM) problem [Thrun et al., 2008]. However, there is 
still very little use of SLAM systems outside research 
institutions, as a number of key problems with current 
SLAM approaches prevent their widespread use in 
unconstrained, real-world environments. 
 The majority of current state-of-the-art SLAM 
systems are based on a geometric interpretation of the 
SLAM problem. These geometric SLAM systems employ 
probabilistic algorithms such as Kalman filters 
[Dissanayake et al., 2001], Expectation Maximisation 
[Thrun et al., 2006] and Rao-Blackwellised particle filters 
[Montemerlo et al., 2002], and are simple to characterise 
and implement. However, their reliance on geometric 
consistency causes them to become computationally 
expensive and fragile when building large maps [Thrun et 

al., 2008]. 
 To avoid computational and scaling limitations, a 
number of SLAM approaches forsake geometric accuracy 
for flexibility to form semi-metric or non-metric 
‘topological’ approaches. Instead of attempting to combine 
all features from the environment in a single Euclidean 
space, non-geometric approaches typically form 
loosely-connected sub-maps [Bosse et al., 2003], reduced 
topological maps [Konolige et al., 2008], or simply record 
the trajectory and identify loop closure events [Angeli et 
al., 2009]. Although the maps generated by these 
algorithms are not sufficient to create accurate 
reconstructions of the environment, they provide the robot 
with the ability to localise and navigate successfully, which 
is all that is required for autonomous applications.  
 The most successful appearance-based SLAM 
algorithm to date is FAB-MAP [Cummins et al., 2008b]. 
FAB-MAP forsakes map building entirely and instead 
focuses on visual data association (so-called ‘SLAM in 
appearance space’). A rigorous probabilistic approach to 
image matching based on a ‘visual bag-of-words’ model 
has allowed FAB-MAP to perform localisation on 
trajectories up to 1000km in length [Cummins et al., 2009]. 
 While attempts have been made to incorporate 
FAB-MAP into a full SLAM solution, they have all 
involved additional geometric algorithms or additional 
sensors [Newman et al., 2009; Paul et al., 2010; Sibley et 
al., 2010]. These attempts are arguably not full SLAM 
systems since they do not incorporate a pose ‘filter’, 
instead relying only on strong data association. 
 In this paper we propose a novel interpretation of the 
SLAM problem, combining the spatial filtering 
characteristics of traditional geometric SLAM algorithms 
with the appearance-based place recognition of 
FAB-MAP. The novel algorithm, dubbed Continuous 
Appearance-based Trajectory SLAM (CAT-SLAM), 
conditions the joint distribution of the observation and 
motion model on a continuous trajectory of previously 
visited locations. The distribution is evaluated using a 
Rao-Blackwellised particle filter, which represents 
location hypotheses as particles constrained to the 
trajectory. We evaluate CAT-SLAM in a large outdoor 
environment, with results compared directly to those 
obtained with FAB-MAP.  



 

 

2 Background 

The probabilistic foundation of the Simultaneous 
Localisation and Mapping problem is defined as follows. 
Given a sequence of motion U0:k and a sequence of 
observations Z0:k of features m, a history of states X0:k can 
be derived. For the online SLAM problem, the state is 
derived by computing the following probability 
distribution:  

 ( )0:0:0 ,,|, xUZmx kkkP  (1)
 

The crucial observation first presented in [Smith et al., 
1990] is that the state vector x and map m are not 
independent; errors in motion estimation are coupled with 
errors in observation, and as such the full joint posterior 
must be solved recursively. This can be performed with the 
use of two additional distributions; the motion model and 
the observation model, which describe the effect of motion 
and feature observation information on the joint posterior. 
The motion model describes the likelihood of a particular 
vehicle state given the current state and motion 
information:

 
 ( )kkkP uxx ,| 1−  (2)

 
The observation model describes the likelihood of a 
particular observation given the current state and map:

 
 ( )mxz ,| kkP  (3)

 
The joint posterior can now be updated in a standard 
predict-correct recursive Bayes form using these two 
models. This probabilistic definition primarily describes 
‘pose filtering’; the process of combining uncertain 
observation and motion information to form an optimal 
estimate of the vehicle state. The definition does not 
constrain the solution to a particular type of map, nor does 
it provide any information on how to perform data 
association. The remainder of this section will describe 2 
common approaches to the SLAM problem: geometric 
SLAM using particle filters, and appearance-based SLAM 
using FAB-MAP. 

2.1 Particle Filter SLAM 
The majority of Kalman filter and Rao-Blackwellised 
particle filter approaches to the SLAM problem use a 
geometric interpretation of the observation and motion

 
Figure 1 – Geometric SLAM interpretation. A continuous 
observation and motion model is defined by successive 
observations of feature geometry. 

model, shown in Figure 1. A series of metric measurements  
zi are taken from locations xi to features mi, typically in the 
form of range, bearing or a combination. The location of 
the features mi with respect to the previously visited 
discrete locations xi can then be determined in continuous 
geometric space. Additionally, the expected observation 
for locations between previously visited states (labelled xk) 
can be determined using relative geometry, as can the 
expected observation for any arbitrary location in space 
(labelled xj).  
 A popular SLAM algorithm that makes use of the 
geometric solution to the SLAM problem is FastSLAM, 
developed in [Montemerlo et al., 2002], which uses a 
Rao-Blackwellised particle filter and various schemes for 
particle resampling. By storing many different location and 
map hypotheses as individual particles and assigning 
weights to those particles based on how well they match 
observations, FastSLAM avoids both the linearization and 
computational complexity issues of EKF SLAM. The chief 
innovation in Rao-Blackwellisation is decoupling the 
process noise from the observation noise. By assuming the 
map stored by each particle is correct, observations 
become conditionally independent. The distribution is 
partitioned as follows: 
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The joint state is represented by N particles, each with pose 
history X, weight w and distribution as follows: 
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The motion-update of FastSLAM is performed by directly 
sampling from the distribution for each particle: 
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Each particle is then assigned a weight based on the 
importance function: 
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All weights are normalised to sum to 1. The particles are 
then resampled with replacement, where the probability of 
selection is proportional to the weight w. All remaining 
particles are then updated using the EKF (or a variant such 
as the UKF). While this is effective in allowing FastSLAM 
to store multiple hypotheses and switch between them as 
required, it can suffer from “particle deprivation” if there 
are no particles near the correct hypothesis [Van der 
Merwe et al., 2001].  
 Many extensions have been made to the FastSLAM 
algorithm: FastSLAM 2.0 [Montemerlo et al., 2003], 
which includes the current observation in the proposal 
distribution for locally optimal sampling; GridSLAM 
[Hähnel et al., 2003], which extends the environment 
representation to an occupancy grid reducing the 
complications of data association in feature-based 
representations; and Distributed Particle SLAM 
(DP-SLAM) [Eliazar et al., 2003], which further reduces 
the computational complexity of FastSLAM by storing the 



 

 

 
Figure 2 – Appearance-based SLAM interpretation. Expected 
observations are only available at discrete locations where an 
observation was previously made. Motion information is not 
used, allowing loop closures of unlimited size. 

particles in an ancestry tree and recording map divergences 
rather than storing an entire map for each particle.  

2.2 Appearance-based Place Recognition 
Another major approach to SLAM that has gained 
popularity in recent years is appearance-based or 
appearance-only SLAM. It is primarily used for detecting 
loop closures in large unknown environments, which it 
performs by determining whether the current location 
matches any previously visited locations or is sufficiently 
different as to be classified as a new location. 
 Figure 2 illustrates the appearance-based approach to 
the SLAM observation and motion model. Each state xi has 
an associated observation zi which stores which features mi 
are visible from that location. The map is represented by 
the history of states X0:k. However, motion information is 
typically discarded, since there is no method of generating 
the expected appearance neither between locations 
(labelled xk) nor at arbitrary locations (labelled xj). 
Appearance-based SLAM systems can therefore close 
loops of any size, regardless of accumulated odometry 
error, but rely entirely on the data association between the 
current observation and a previous observation. 
 The current state-of-the-art appearance-based SLAM 
system is FAB-MAP [Cummins et al., 2008b], which uses 
a Chow-Liu dependency tree and recursive Bayes 
estimation within a rigid probabilistic framework to 
provide robust loop closure detection. 
 Each image is converted into the visual bag-of-words 
representation described in [Sivic et al., 2003]. It is 
therefore necessary to create a database of common 
features from a set of training data in a similar environment 
to the test environment prior to performing localisation 
[Cummins et al., 2007]. Every feature extracted from the 
image is converted to the closest visual word, reducing 
each image to a binary vector of which words are present in 
the image. 

 },...,{ 1 vk zzZ =  (8)
 

Each unique location Lk is represented by the probability 
that the object ei (that creates observation zi) is present in 
the scene. 

 )}|1(),...,|1({ kvki LePLeP ==  (9)
 

The probability of a new image coming from the same 

location as a previous image is estimated using recursive 
Bayes: 
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where k

Z  is a collection of previous observations up to 
time k. )Z,|( 1−k

ik LZP  is assumed to be independent from 
all past observations and is calculated using a Chow Liu 
approximation [Chow et al., 1968]. The Chow Liu tree is 
constructed once as an offline process based on training 
data. Observation likelihoods are determined using the 
Chow Liu tree as follows: 
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where r is the root node of the Chow Liu tree and pq is the 
parent of node q. The prior probability of matching a 
location )|( 1−k

iLP Z  is estimated using a naïve motion 

model, where the probability of a new place )Z|( 1−k
newLP  

is set to a constant if the current hypothesised location is 
within 1 frame of the matched location. In practice this has 
only a slight effect on the final result [Cummins et al., 
2008b]. 
 The denominator of equation 10 incorporates the 
probability of matching to a new location in addition to 
localisation to a previously visited place. To estimate if a 
new observation comes from a previously unvisited 
location the model needs to consider all locations, not just 
visited locations. This can be split into mapped and 
unmapped locations: 
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where M is the set of mapped locations. Since the second 
term cannot be evaluated directly (as it would require 
information on all unknown locations), an estimation must 
be used. A random selection of scenes from training data is 
used to evaluate the unmapped location according to:
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where Lu is a sampled location and ns is the total number of 
samples. The sampling technique generally provides 
superior results to the mean field approximation [Cummins 
et al., 2008b].  
 A number of enhancements have been made to the 
original FAB-MAP algorithm, to both reduce the 
computational cost of storing large environments and to 
increase the matching speed of the system. The 
implementation in [Cummins et al., 2008a] presented a 
probabilistic bail-out condition based on the Bennett 
Inequality [Boucheron et al., 2004], to rank features based 
on their information content and to discard unlikely 
matches without performing the full recursive Bayes 
calculation. To further reduce the amount of computation 
required, an inverted index lookup scheme was 
implemented in FAB-MAP 2.0 [Cummins et al., 2009], 



 

 

which allows fully sparse evaluation.. An additional 
RANSAC stage was added in FAB-MAP 2.0 to provide a 
geometric post-verification of image matches.  
 A number of attempts to incorporate FAB-MAP into 
a full mapping system have been made, where it has been 
used as a first stage to detect loop closure. However, these 
attempts then rely on geometric matching techniques using 
either laser scanners [Paul et al., 2010] or stereo cameras 
[Newman et al., 2009], which do not incorporate odometric 
information in the manner of a pose filter, and as such still 
rely entirely on the strength of data association between 
two discrete locations. 

3 Trajectory-based Pose Filtering 

The proposed SLAM system outlined in this section is 
derived from a ‘trajectory-based’ interpretation of the 
SLAM problem. This interpretation lies between the two 
major SLAM paradigms presented in the previous section; 
it combines aspects of the geometric motion model of 
FastSLAM with the appearance-based observation model 
of FAB-MAP.  
 A diagram of the trajectory-based interpretation is 
presented in Figure 3. As with FastSLAM, states xi are 
linked by odometry information ui; however, observations 
zi are formed by appearance representations rather than 
metric distances. The observation model is formed by a 
continuous trajectory-based appearance model, which 
calculates the expected appearance along the trajectory 
between two nodes. This model allows the calculation of 
the expected observation zk from location xk on the 
trajectory between two previously visited locations. 
However, unlike the geometric observation model, it does 
not allow the calculation of the expected observation zj at 
an arbitrary location xj. This limits the system to localising 
only to exact trajectories it has previously traversed; 
however, the utility of other appearance-based SLAM 
methods indicate that this capability is not required for all 
applications.  
 The observation model can take any form, but is only 
required to determine the existence or non-existence of 
visible features along the continuous trajectory between 
two sequential observations. As such, methods that do not 
require feature correspondence or geometry are preferred. 
 

 
Figure 3 – Trajectory-based SLAM interpretation. A continuous 
trajectory-based observation model allows the expected 
appearance to be calculated at any point along a previously 
visited trajectory. Motion information permits the use of pose 
filtering without restricting loop closure size. 

 The history of poses is represented by a continuous 
trajectory T, which intersects all previous discrete poses 
X0:k: 

 ( ) ktTtTk ≤≤∈⇒∈ 0,:0 xX  (14) 

The full history of poses is recovered using the continuous 
pose x(t) with continuous index t, where x(k) = xk. For 
localisation in three degrees of freedom the discrete and 
continuous pose are represented as follows: 
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The particular form of the trajectory T is defined by the 
continuous motion model of the vehicle; the simplest case 
of a linearly interpolated motion model is illustrated as 
follows: 

 ( )  ( )
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As in topological SLAM solutions, the map is formed by 
the continuous history of poses as follows: 

 ( )ktk ≤≤=⇒= 0:0 xmXm  (17)
 

The map update is performed by correcting the history of 
poses X0:k when a loop closure is detected. However, for 
this implementation the purpose is to determine the 
characteristics of loop closure, and as such global map 
correction is not required. The SLAM distribution when 
conditioned on the continuous trajectory T is modified 
from equation 1 as follows: 

 ( )0:0:0 ,,| xUZx kkk TP ∈  (18)
 

For this implementation, the distribution above is 
evaluated using a Rao-Blackwellised particle filter. The 
distribution is approximated using N particles, each with 
weight w, position on the trajectory xk, and continuous 
trajectory index t: 
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The following sections detail the components of the 
Rao-Blackwellised particle filter required to solve the joint 
distribution along the continuous trajectory. 

3.1 Trajectory-based Sampling 
The proposal distribution for the trajectory-based particle 
filter is given by the vehicle motion conditioned on the 
trajectory T:  
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This method allows a nonlinear vehicle motion model to be 
used (as with EKF- or FastSLAM), but ensures all particles 
remain constrained to the trajectory of previously visited 
locations. The particle update is performed by first 
generating a proposed posekx̂ from the nonlinear vehicle 
model f with additive Gaussian noise wk: 
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For a vehicle moving in three degrees of freedom the 
motion model is as follows: 
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where [ ]T

kkkk yx θ∆∆∆=u . The proposed covariance 

is generated by linearising the motion model at the 
proposed location with noise covariance Qk: 
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From this, a distribution over all possible poses can be 
represented using the standard multivariate Gaussian: 
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The location of the particle on the trajectory is found by 
searching the trajectory for the continuous index t for 
which the above distribution is maximized: 
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From this index the pose of the particle is set to the most 
likely pose on the trajectory: 

 ( ))()( ii
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The maximum motion likelihood( )kP xx ˆ| is stored for later 
use in particle importance weighting. 

3.2 Continuous Appearance Representation 
In order to generate the observation model of equation 3 
for a continuous trajectory based system, a continuous 
representation of appearance is required. Conventional 
geometric SLAM systems such as MonoSLAM [Davison 
et al., 2007] perform this using 3D feature locations in a 
fixed co-ordinate frame; however as stated above the 
purpose of this algorithm is not to locate features in 3D 
space. The location representation for each particle is 
derived from that presented in equation 9, but extended to 
represent appearance between discrete observations as 
follows: 
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The method of generating these interpolated appearance 
representations is dependent on both the continuous 
vehicle motion model and the camera model. However, for 
the simple linear case of equation 15, the continuous 
representation of appearance can be generated similarly as 
follows, by interpolating between two successive discrete 
observations: 
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As with FAB-MAP, the set of visual words v that form the 

        

         
Figure 4 – Update process of CAT-SLAM particles. a) Particles )(

1
i

k −x are constrained to the trajectory between previously visited locations x0:k. 

b) Proposed particle locations )(ˆ i
kx are sampled from the motion model with control input uk. c) The updated position on the trajectory)( i

kx is 

found at maximum likelihood location of distribution ( ))(ˆ| i
kkP xx . d) The particle weight is updated using the motion likelihood and 

observation likelihood ( ))()( | i
k

i
kP xz , where zk is generated using a continuous appearance model. 



 

 

observation and appearance representation must be derived 
from training data in a similar environment to the test 
environment. 

3.3 Importance Weighting 
The importance weighting of the particles is drawn from 
the numerators of equation 7 and 10; it combines the 
observation likelihood of FAB-MAP using the continuous 
representation of appearance with the motion prior of 
FastSLAM conditioned on the trajectory. By only 
evaluating the motion and observation model once per 
particle, updating the weights can be performed in constant 
time proportional to the number of particles regardless of 
the number of previously visited locations. The proposed 
weighting of each particle is as follows: 
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The observation likelihood makes use of the Chow Liu 
distribution as in equation 11 at location t on the trajectory: 
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The leftmost part of equation 28 is calculated as follows: 
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where ( )
qpqq zsezP ,| =  is the detector probability and 

( )( ))(| i

i tseP x= is the continuous appearance 
representation defined in equation 26. The motion prior is 
the maximum likelihood point of the motion distribution 
along the trajectory as found in equation 23: 
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To represent the likelihood of a location not on the 
trajectory (similar to the denominator term in equation 12), 
an additional particle representing an ‘unknown’ pose is 
required. The weight of this particle is calculated as 
follows: 
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Note that this particle does not update using its previous 
weight but is re-normalised at each step; this represents the 
uniform likelihood of departing from a previously visited 
section of the trajectory at any point in time. The two 
distributions can be approximated using information from 
training data as follows: 
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Where zavg represents an ‘average’ observation and uavg an 
‘average’ control input. These can be found by simply 
averaging all observations and controls in the training data 
set, or by using the random sampling method in equation 
13. Without this ‘unknown’ pose particle, the particle 
distribution represents pure localization, since the 
probability of a pose not on the trajectory is assumed to be 
zero.  

3.4 Particle Resampling 
The proposed weight of each particle is normalised, such 

that the sum of all weighs of particles on the trajectory plus 
the ‘unknown’ particle weight is equal to 1. 

 
u

k

N

j

j

k

i

ki

k
ww

w
w

ˆˆ

ˆ
)(

)(
)(

+
=
∑

 (35)

 
The particles are resampled when the effective sample size 
(ESS) falls below a predefined threshold [Liu et al., 2001]. 
The ESS is computed as follows: 
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Particles are selected with probability proportional to their 
weight wk using the Select with Replacement method [Liu 
et al., 2001]. Any particles selected to replace the 
‘unknown’ particle are sampled to a uniform random 
location on the trajectory as follows: 
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This serves to counteract the effects of particle deprivation, 
since the proportion of particles sampled to diverse 
locations on the trajectory increases (thereby increasing the 
probability of detecting loop closure) as the ‘unknown 
place’ likelihood increases. 

3.5 Trajectory Distribution Calculation 
To determine the most likely location hypothesis from the 
distribution of particles a spatially selective method is 
used, equivalent to integrating the probability distribution 
over a short distance along the trajectory. The value of the 
distribution at particle location xk is as follows: 
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The spatially selective function h(i, j) is defined as follows: 
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The distribution will therefore only reach a probability of 1 
at any location if all particles are within distance d of the 
hypothesized location (causing the numerator to sum to 1), 
and the ‘unknown’ location weight is equal to 0. 

4 Experimental Procedure 

The following section details the steps taken to evaluate the 
proposed CAT-SLAM algorithm. Since the primary focus 
of this algorithm is improving loop closure performance 
and not map construction, the experiment will be focused 
on comparing it to FAB-MAP in a large outdoor 
environment.  

4.1 Experimental Setup 
This experiment uses a dataset previously gathered for the 
full-day mapping experiment presented in [Glover et al., 
2010]. The dataset consists of video captured at 15 frames 
per second from a forward-facing Logitech QuickCam Pro 
9000 webcam mounted on the roof of a car, as well as GPS 
data gathered at 1Hz for ground truth. The images gathered 
by the camera have a resolution of 640x480 pixels, 
representing a field of view of 62 degrees horizontal by 46 



 

 

degrees vertical. The GPS lock remained consistent 
throughout the entire route. 
 The route taken by the car is a 1
surburban road network, pictured in Figure 
multiple repeated loops and wide variation in the types of 
roads traversed; from wide 4-lane main roads to single lane 
roads bordered by dense foliage.  The dataset was 
gathered at midday to reduce the likelihood of image 
saturation due to direct sunlight. No modification of the 
environment or interruption of normal traffic conditions 
was performed.  

4.2 Algorithm Details 

The codebook and Chow Liu tree used for both FAB
and CAT-SLAM are derived from the experiments 

Figure 5 – Test environment consisting of a 16km road network 
covering approximately 1.5 square kilometres. 

Table 1 – Summary of algorithm parameters.

FAB-MAP 

Detector model 
P(z=1|e=0) 

P(z=0|e=1) 

New place likelihood P(Lnew|Z
k-1) 

CAT-SLAM 

Detector model 
P(z=1|e=0) 

P(z=0|e=1) 

Motion uncertainty 
σy 

σθ 

Number of Particles N 

Minimum ESS 
threshold ESS 

Local distribution size d 

 
presented in [Milford et al., 2008a]. SURF features were 
extracted from 7000 non-overlapping images sampled 
from a larger dataset of the same suburb, resulting in
codebook containing 5730 visual words. The average 
observation was derived from this same dataset using the 
mean field approximation.  
 Odometry information was generated 
information using the method presented in 
2008b]. While this semi-metric method is not as pre
feature-based approaches, it does not require the 
calculation of feature correspondence 
produces repeatable results in successive traversals of the 
same location. 
 The list of constants used in both algorithms is 
presented in Table 1. For evaluation, the maximum 
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Odometry information was generated from visual 
information using the method presented in [Milford et al., 

method is not as precise as 
, it does not require the 

correspondence or geometry and 
produces repeatable results in successive traversals of the 

The list of constants used in both algorithms is 
For evaluation, the maximum 

distance between the expected and actual GPS location for 
a true positive loop closure was set to 20m, to reflect the 
large scale of the dataset.  

5 Results 

This section describes the map
FAB-MAP and CAT-SLAM on the 16km suburban road 
network. The primary 
precision-recall curve, where precision is defined as the 
number of correct matches divided by the total number of 
matches, and recall as the number of correct matches 
divided by the total number of expected 
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where TP are true positives, FP false positives and FN false 
negatives. Expected correct matches are defined as 
previously visited GPS locations within 20m distance and 
10 degrees heading to the current location, to avoid 
unreasonable loop closure expectations 
crossing intersections from different approaches
 To use either of these systems to detect loop closure 
for a semi-metric or metric SLAM system
100% is required, since false positive matches can cause 
catastrophic failure during mapping 
[Thrun et al., 2008]. In this respect, the desired outcome is 
a high recall rate at 100% precision. 
the false positives reported by both sy
determine the likely failure modes in other environments.

5.1 Precision-Recall 
Figure 6 shows the precision
FAB-MAP and CAT-SLAM on the full road network. 

Figure 6 – Precision-recall curve for CAT
for the 16km trajectory. At 100% precision, CAT
59% of the correct matches, where FAB

Note the scale on the y-axis; both algorithms report over 
90% precision over more than 80% of the recall 
However, FAB-MAP 1.0 achieves only 19% recall at 
100% precision, where CAT
locations successfully. The
FAB-MAP in this environment compared to previous 
FAB-MAP experiments can be attributed to the use of 
single forward-facing camera, as opposed to multiple 
wide-angle [Cummins et al., 2008b]
[Newman et al., 2009]
post-verification in [Cummins et al., 2009]
 Below 96% precision

distance between the expected and actual GPS location for 
a true positive loop closure was set to 20m, to reflect the 

 

This section describes the mapping results of both 
LAM on the 16km suburban road 

primary performance metric is the 
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Expected correct matches are defined as 
previously visited GPS locations within 20m distance and 

o the current location, to avoid 
unreasonable loop closure expectations (such as when 
crossing intersections from different approaches). 
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metric or metric SLAM system a precision of 

equired, since false positive matches can cause 
catastrophic failure during mapping for geometric systems 

In this respect, the desired outcome is 
a high recall rate at 100% precision. However, analysis of 
the false positives reported by both systems is important to 

ermine the likely failure modes in other environments. 

shows the precision-recall curve for both 
SLAM on the full road network.  

 
urve for CAT-SLAM and FAB-MAP 

for the 16km trajectory. At 100% precision, CAT-SLAM recalls 
59% of the correct matches, where FAB-MAP only recalls 19%. 

axis; both algorithms report over 
90% precision over more than 80% of the recall range. 

MAP 1.0 achieves only 19% recall at 
100% precision, where CAT-SLAM recalls over 59% of 
locations successfully. The poor performance of 

in this environment compared to previous 
MAP experiments can be attributed to the use of a 

facing camera, as opposed to multiple 
[Cummins et al., 2008b] or omnidirectional 

[Newman et al., 2009] cameras. The geometric 
[Cummins et al., 2009] was not used. 

Below 96% precision, FAB-MAP provides superior 



 

 

recall rates to CAT-SLAM. Since FAB-MAP compares the 
current location appearance to all previous locations where 
CAT-SLAM only compares to previous locations where 
particles exist, it is possible that if the particle diversity is 
sufficiently low occasional loop closures will not be 
detected. This does not appear to have a significant effect 
on the results, as even at 90% precision CAT-SLAM 
provides almost 90% recall.  

5.2 Loop Closure Performance 
Figure 7 shows the loop closures projected on to the GPS 
positions recorded on the route for four separate matching 
cases. Figures 7a) and 7b) show the loop closures detected 
by FAB-MAP and CAT-SLAM for the threshold that 
provides maximum recall at 100% precision. The larger 
number of green true positive loop closures illustrate that 
CAT-SLAM correctly relocalises more often than 
FAB-MAP. Additionally, the true positive loop closures 
are approximately evenly distributed across the area and 
not concentrated in particular locations of unique visual 
appearance. 
 The relative distributions of true positive and false 
negative loop closures are of note: FAB-MAP tends to 

switch between true positive and false negative matches 
within the space of a few metres, where CAT-SLAM 
typically has unbroken sequences of 20m or more. This 
reflects the sequential matching nature of CAT-SLAM; it 
requires a number of correct visual and odometric matches 
before a sufficiently dominant hypothesis is formed. 
However, once such a hypothesis is dominant, it is 
maintained until particles not within the local distribution 
distance d are sufficiently supported by novel visual and 
odometric information to suggest an alternate hypothesis. 
 Figures 7c) and 7d) show the loop closures detected 
at 95% precision. While both algorithms present an equal 
fraction of false positives, FAB-MAP appears to distribute 
them more evenly across the dataset. The trajectory-based 
matching characteristics of CAT-SLAM cause it to 
maintain even false positives (provided there is sufficient 
false visual and odometric information). Interestingly, all 
sections reported as false positives by CAT-SLAM occur 
on straight sections of road; in these cases the motion 
model provides sufficient weighting to remove loop 
closure candidates that are geometrically dissimilar along 
the trajectory.  
 

 

 

 

Figure 7 – Loop closures projected on GPS ground truth. a) and b) show loop closures at 100% precision, c) and d) show loop closures at 
95% precision. Lighter green points indicate true positives, darker blue points indicate false negatives, red points with loop closure lines 
show false positives. 
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5.3 Computational Complexity 
Currently CAT-SLAM requires approximately 1ms per 
particle update on a single core 3GHz Core 2 processor, 
comparable to early FAB-MAP implementations 
[Cummins et al., 2007]. The majority of this time is spent 
evaluating the observation likelihood. CAT-SLAM is 
unsuitable for real-time application in its current form; 
however, since each particle is independent, the algorithm 
is highly parallelisable. However, every past observation 
must be stored, so the appearance-based map grows in 
memory requirements in proportion to the number of 
observations. 

6 Discussion 

The results of the mapping experiment demonstrated that 
the combination of both appearance and motion 
information in CAT-SLAM provides a clear advantage 
over appearance-based SLAM systems that rely on visual 
data alone for applications that require 100% precision 
loop closure. The improvement over FAB-MAP is 
twofold; first, the addition of a pose filter allows spurious 
false positives to be rejected, and it allows a location 
hypothesis to be maintained with only partial visual 
matches.  
 Since CAT-SLAM is built upon the same underlying 
appearance-based matching system as FAB-MAP, its 
performance at identifying an initial loop closure is 
approximately equal. Due to the trajectory following 
properties of the particles, CAT-SLAM can maintain a 
hypothesis across a number of frames when supporting 
visual information above the hypothesis threshold is not 
available for all frames, as is the case with FAB-MAP. 
This greatly increases the recall rates as entire sections of 
trajectories can be matched, rather than simply individual 
frames. 
 However, the requirement for a sequence of familiar 
visual and odometric information reduces the speed at 
which CAT-SLAM is able to generate a new location 
hypothesis. While FAB-MAP can localize using only a 
single frame, CAT-SLAM requires a number of particle 
update (and possibly resample) stages; revisting short 
sections of a path (such as crossing an intersection from a 
different approach) may not be detected by CAT-SLAM.  
 The computational advantages of a fixed number of 
particles representing a distribution could allow 
CAT-SLAM to scale to much larger environments than 
other appearance-based SLAM systems, provided 
sufficient particle diversity is maintained.  

6.1 Future Work 
There are a number of improvements that can be made in 
many aspects of the current CAT-SLAM implementation 
to improve its performance. 
 Currently the linear approximations in equations 16 
and 28 cater to the vehicle model used. However, for 
holonomic vehicles which do not necessarily revisit a 
previously traversed trajectory with an identical 
orientation, these approximations will not suffice. Explicit 
decoupling of orientation with trajectory will be required 
to support holonomic vehicles and similar platforms. 
 The linear interpolation of appearance in equation 28 
does not capture the true nature of changing appearance 
with respect to motion. A more sophisticated method that 
incorporates feature-based optical flow without evaluating 

3D feature geometry is currently in development. 
 The principles behind the Bennet bound and inverted 
index of later FAB-MAP implementations [Cummins et 
al., 2008a; Cummins et al., 2009] are equally applicable to 
CAT-SLAM. This would significantly reduce the 
computation time taken to update the particle weights, 
since the observation likelihoods could be determined 
using a batch update method. As mentioned, the algorithm 
is highly parallelisable, and could provide real-time 
performance on modern parallel or GPGPU processors 
without additional computational enhancements. 
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