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Abstract

This paper presents a novel technique for
performing SLAM along a continuous trajectory
of appearance. Derived from components of
FastSLAM and FAB-MAP, the new system
dubbed Continuous Appearance-based Trajectory
SLAM (CAT-SLAM) augments appearance-
based place recognition with particle-filter based
‘pose filtering’ within a probabilistic framework,
without calculating global feature geometry or
performing 3D map construction. For loop
closure detection CAT-SLAM updates in
constant time regardless of map size. We evaluate
the effectiveness of CAT-SLAM on a 16km
outdoor road network and determine its loop
closure performance relative to FAB-MAP.
CAT-SLAM recognizes 3 times the number of
loop closures for the case where no false positives
occur, demonstrating its potential use for robust
loop closure detection in large environments.

1 Introduction

The future capabilities of mobile robots dependragty on
their abilities to navigate and interact in thel igarld. A

key requirement for navigation is an internal reprgation

of the environment that the robot inhabits. Autoom
robot navigation has been a major topic of robotics
research for the past two decades, and is commonly
referred to as the Simultaneous Localisation angpiey
(SLAM) problem [Thrun et al., 2008]. However, thase
still very little use of SLAM systems outside resdma
institutions, as a number of key problems with entr
SLAM approaches prevent their widespread use in
unconstrained, real-world environments.

The majority of current state-of-the-art SLAM
systems are based on a geometric interpretatiotheof
SLAM problem. These geometric SLAM systems employ
probabilistic algorithms such as Kalman filters
[Dissanayake et al.,, 2001], Expectation Maximigatio
[Thrun et al., 2006] and Rao-Blackwellised partifthers
[Montemerlo et al., 2002], and are simple to chendse
and implement. However, their reliance on geometric
consistency causes them to become computationally
expensive and fragile when building large maps (ifnhet

al., 2008].

To avoid computational and scaling limitations, a
number of SLAM approaches forsake geometric acgurac
for flexibility to form semi-metric or non-metric
‘topological’ approaches. Instead of attemptingdambine
all features from the environment in a single Eiledin
space, nhon-geometric approaches typically form
loosely-connected sub-maps [Bosse et al., 2008\ced
topological maps [Konolige et al., 2008], or simpigord
the trajectory and identify loop closure events gah et
al.,, 2009]. Although the maps generated by these
algorithms are not sufficient to create accurate
reconstructions of the environment, they providerbbot
with the ability to localise and navigate succelbgfwhich
is all that is required for autonomous applications

The most successful appearance-based SLAM
algorithm to date is FAB-MAP [Cummins et al., 20R8b
FAB-MAP forsakes map building entirely and instead
focuses on visual data association (so-called ‘SLAM
appearance space’). A rigorous probabilistic apgiraa
image matching based on a ‘visual bag-of-words’ ehod
has allowed FAB-MAP to perform localisation on
trajectories up to 2000km in length [Cummins et2009].

While attempts have been made to incorporate
FAB-MAP into a full SLAM solution, they have all
involved additional geometric algorithms or additib
sensors [Newman et al., 2009; Paul et al., 201leBiet
al., 2010]. These attempts are arguably not fulABL
systems since they do not incorporate a pose rfilte
instead relying only on strong data association.

In this paper we propose a novel interpretatiothef
SLAM problem, combining the spatial filtering
characteristics of traditional geometric SLAM aligioms
with the appearance-based place recognition of
FAB-MAP. The novel algorithm, dubbed Continuous
Appearance-based Trajectory SLAM (CAT-SLAM),
conditions the joint distribution of the observatiand
motion model on a continuous trajectory of previgpus
visited locations. The distribution is evaluatedngsa
Rao-Blackwellised particle filter, which represents
location hypotheses as particles constrained to the
trajectory. We evaluate CAT-SLAM in a large outdoor
environment, with results compared directly to thos
obtained with FAB-MAP.



2 Background

The probabilistic foundation of the Simultaneous
Localisation and Mapping problem is defined ascfeb.
Given a sequence of motiobdy, and a sequence of
observationg o of featuregn, a history of stateXqy can

be derived. For the online SLAM problem, the stiate
derived by computing the following probability
distribution:

P(X, M| Zqg,Uge Xo) (1)

The crucial observation first presented in [Smithak,
1990] is that the state vector and mapm are not
independent; errors in motion estimation are calipigh
errors in observation, and as such the full joiostprior
must be solved recursively. This can be performitid thve
use of two additional distributions; the motion rebend
the observation model, which describe the effechofion
and feature observation information on the joirdgtpaor.
The motion model describes the likelihood of aipatar
vehicle state given the current state and motion
information:

P(X, 1X.u,) 2)

The observation model describes the likelihood of a
particular observation given the current state mag:

P(z, Ix,,m) 3)

The joint posterior can now be updated in a stahdar
predict-correct recursive Bayes form using these tw
models. This probabilistic definition primarily de#es
‘pose filtering’; the process of combining uncemtai
observation and motion information to form an optim
estimate of the vehicle state. The definition does
constrain the solution to a particular type of maqr, does

it provide any information on how to perform data
association. The remainder of this section willaliee 2
common approaches to the SLAM problem: geometric
SLAM using particle filters, and appearance-basetiNt
using FAB-MAP.

2.1 ParticleFilter SLAM

The majority of Kalman filter and Rao-Blackwellised
particle filter approaches to the SLAM problem wse
geometric interpretation of the observation and iomot

Figure 1 — Geometric SLAM interpretation. A contius
observation and motion model is defined by sucuessi
observations of feature geometry.

model, shown in Figure 1. A series of metric measwants

z; are taken from locatione to featuresn;, typically in the
form of range, bearing or a combination. The laratf
the featuresm; with respect to the previously visited
discrete locationg; can then be determined in continuous
geometric space. Additionally, the expected obd@mwa
for locations between previously visited statebdledx,)
can be determined using relative geometry, as han t
expected observation for any arbitrary locationspace
(labelledx)).

A popular SLAM algorithm that makes use of the
geometric solution to the SLAM problem is FastSLAM,
developed in [Montemerlo et al., 2002], which uses
Rao-Blackwellised particle filter and various sclesnfor
particle resampling. By storing many different loea and
map hypotheses as individual particles and asgignin
weights to those particles based on how well thaycm
observations, FastSLAM avoids both the linearizatiod
computational complexity issues of EKF SLAM. Theeth
innovation in Rao-Blackwellisation is decouplingeth
process noise from the observation noise. By assythie
map stored by each particle is correct, observation
become conditionally independent. The distributiien
partitioned as follows:

P(X(Ik'm IZ&k'UQk’XO) (4)
= P(m |X0k’ZQK)P(XO,k |Z UO.k'XO)

ok?

The joint state is representedMyarticles, each with pose
historyX, weightw and distribution as follows:

e X0, Pmx2, 2, }" (5)

The motion-update of FastSLAM is performed by disec
sampling from the distribution for each particle:

X0 ~ P(x, [x%,u,) 6)

Each particle is then assigned a weight based en th
importance function:

) — \afD) P(Zk |Xgl)(,ZQk_ )p(x(ki) |X(k|2 ’uk)
W =w AXOTX0 Z0)

All weights are normalised to sum to 1. The pagschare
then resampled with replacement, where the praobabil
selection is proportional to the weigivt All remaining
particles are then updated using the EKF (or amasuch
as the UKF). While this is effective in allowingst8LAM

to store multiple hypotheses and switch betweemthe
required, it can suffer from “particle deprivatioifi“there
are no particles near the correct hypothesis [Van d
Merwe et al., 2001].

Many extensions have been made to the FastSLAM
algorithm: FastSLAM 2.0 [Montemerlo et al., 2003],
which includes the current observation in the psgbo
distribution for locally optimal sampling; GridSLAM
[Hahnel et al., 2003], which extends the environinen
representation to an occupancy grid reducing the
complications of data association in feature-based
representations; and Distributed Particle SLAM
(DP-SLAM) [Eliazar et al., 2003], which further necks
the computational complexity of FastSLAM by storihg

()



Figure 2 — Appearance-based SLAM interpretationpe€ked
observations are only available at discrete locatiwhere an
observation was previously made. Motion informatisnnot
used, allowing loop closures of unlimited size.

particles in an ancestry tree and recording magrdances
rather than storing an entire map for each patrticle

2.2 Appearance-based Place Recognition

Another major approach to SLAM that has gained
popularity in recent years is appearance-based or
appearance-only SLAM. It is primarily used for dzieg

loop closures in large unknown environments, wthiich
performs by determining whether the current logatio
matches any previously visited locations or is isightly
different as to be classified as a new location.

Figure 2 illustrates the appearance-based apptoach
the SLAM observation and motion model. Each stabas
an associated observatipnwhich stores which features mi
are visible from that location. The map is représerby
the history of stateXqx. However, motion information is
typically discarded, since there is no method afegating
the expected appearance neither between locations
(labelled x) nor at arbitrary locations (labelled;).
Appearance-based SLAM systems can therefore close
loops of any size, regardless of accumulated odgmet
error, but rely entirely on the data associatiotwieen the
current observation and a previous observation.

The current state-of-the-art appearance-based SLAM
system is FAB-MAP [Cummins et al., 2008b], whiclesis
a Chow-Liu dependency tree and recursive Bayes
estimation within a rigid probabilistic frameworlo t
provide robust loop closure detection.

Each image is converted into the visual bag-ofdsor
representation described in [Sivic et al., 2003].id
therefore necessary to create a database of common
features from a set of training data in a simitarienment
to the test environment prior to performing locatien
[Cummins et al., 2007]. Every feature extractednfrihe
image is converted to the closest visual word, cady
each image to a binary vector of which words aes@nt in
the image.

Z ={z,...2,;} (8)
Each unique locatiohy is represented by the probability
that the objecg (that creates observatior) 5 present in
the scene.
{P(e =1IL,)....P(e, =1|L)} )

The probability of a new image coming from the same

location as a previous image is estimated usingrsée
Bayes:

P(Z |L.27)P(L 1 27)
P(Z, 12"

P(L |2") = (10)

where z* is a collection of previous observations up to
timek. P(Z, |L,,Z“") is assumed to be independent from
all past observations and is calculated using anChio
approximation [Chow et al., 1968]. The Chow Liuetiis
constructed once as an offline process based oniniga
data. Observation likelihoods are determined ushmey
Chow Liu tree as follows:

M
PZIL)=PEIL)[]P&I12,.L) (11)

wherer is the root node of the Chow Liu tree gnds the
parent of nodeq. The prior probability of matching a

location P(L, |2") is estimated using a naive motion

model, where the probability of a new pla&L,, | Z“*")

is set to a constant if the current hypothesisedtlon is
within 1 frame of the matched location. In practicis has
only a slight effect on the final result [Cummins &.,
2008b].

The denominator of equation 10 incorporates the
probability of matching to a new location in adalitito
localisation to a previously visited place. To estie if a
new observation comes from a previously unvisited
location the model needs to consider all locatios just
visited locations. This can be split into mapped an
unmapped locations:

P(Z 12 = Y P(Z |L,)P(L, |2
+ > P(Z, IL)P(L, |2

nMm

(12)

whereM is the set of mapped locations. Since the second
term cannot be evaluated directly (as it would nequ
information on all unknown locations), an estimatioust

be used. A random selection of scenes from traidatg is
used to evaluate the unmapped location according to

> P(Z, IL,)P(L, 12

< P(Zk | Lu)
u=l n

(13)
=P(L,, 127

S

whereL, is a sampled location amglis the total number of
samples. The sampling technique generally provides
superior results to the mean field approximatioarftnins

et al., 2008b].

A number of enhancements have been made to the
original FAB-MAP algorithm, to both reduce the
computational cost of storing large environmentd &m
increase the matching speed of the system. The
implementation in [Cummins et al., 2008a] preserded
probabilistic bail-out condition based on the Betne
Inequality [Boucheron et al., 2004], to rank featibased
on their information content and to discard unlkel
matches without performing the full recursive Bayes
calculation. To further reduce the amount of corapan
required, an inverted index lookup scheme was
implemented in FAB-MAP 2.0 [Cummins et al., 2009],



which allows fully sparse evaluation.. An additibna
RANSAC stage was added in FAB-MAP 2.0 to provide a
geometric post-verification of image matches.

A number of attempts to incorporate FAB-MAP into
a full mapping system have been made, where ibbas
used as a first stage to detect loop closure. Hewéhrese
attempts then rely on geometric matching technigsesy
either laser scanners [Paul et al., 2010] or steagoeras
[Newman et al., 2009], which do not incorporateroétric
information in the manner of a pose filter, ancdash still
rely entirely on the strength of data associatietween
two discrete locations.

3 Trajectory-based Pose Filtering

The proposed SLAM system outlined in this sectisn i
derived from a ‘trajectory-based’ interpretation thfe
SLAM problem. This interpretation lies between tin®
major SLAM paradigms presented in the previousicect

it combines aspects of the geometric motion model o
FastSLAM with the appearance-based observation mode
of FAB-MAP.

A diagram of the trajectory-based interpretation i
presented in Figure 3. As with FastSLAM, statesre
linked by odometry information;; however, observations
z; are formed by appearance representations rather th
metric distances. The observation model is formgdab
continuous trajectory-based appearance model, which
calculates the expected appearance along the tomjec
between two nodes. This model allows the calcutatib
the expected observation, from location x, on the
trajectory between two previously visited locations
However, unlike the geometric observation modedoies
not allow the calculation of the expected obseovst] at
an arbitrary locatiow;. This limits the system to localising
only to exact trajectories it has previously traest;
however, the utility of other appearance-based SLAM
methods indicate that this capability is not reedifor all
applications.

The observation model can take any form, but ig on
required to determine the existence or non-exigtesfc
visible features along the continuous trajectoriwieen
two sequential observations. As such, methodsdhatot
require feature correspondence or geometry arempesf.

Figure 3 — Trajectory-based SLAM interpretationcéntinuous
trajectory-based observation model allows the ebgoec
appearance to be calculated at any point alongesiqusly
visited trajectory. Motion information permits thuse of pose
filtering without restricting loop closure size.

The history of poses is represented by a contisuou
trajectory T, which intersects all previous discrete poses
XO:k:

X, OT =x(t)OT, ostsk (14)

The full history of poses is recovered using theticmious
posex(t) with continuous index, wherex(k) = x. For
localisation in three degrees of freedom the discemd
continuous pose are represented as follows:

X, x(t)
X =y | x(t)=] vit)
g

k o)

The particular form of the trajectorly is defined by the
continuous motion model of the vehicle; the simptese
of a linearly interpolated motion model is illuded as

follows:
x(t) = (t]-t)x, + (- [t)X,

As in topological SLAM solutions, the map is formied
the continuous history of poses as follows:

(15)

(16)

m=X, =>m=x(0st<k) (17)
The map update is performed by correcting the histé
posesXox When a loop closure is detected. However, for
this implementation the purpose is to determine the
characteristics of loop closure, and as such glohap
correction is not required. The SLAM distributiorh@n
conditioned on the continuous trajectofyis modified
from equation 1 as follows:

P(Xk DT |ZQk’U0k’X0) (18)
For this implementation, the distribution above is
evaluated using a Rao-Blackwellised particle filt€he
distribution is approximated using particles, each with
weight w, position on the trajectory,, and continuous
trajectory index:

ot o2 1)

The following sections detail the components of the
Rao-Blackwellised particle filter required to sohe joint
distribution along the continuous trajectory.

3.1 Trajectory-based Sampling

The proposal distribution for the trajectory-bageuticle
filter is given by the vehicle motion conditioned the
trajectoryT:

(19)

X ~ P(xk aT |x<k'_>1,uk) (20)

This method allows a nonlinear vehicle motion maddie
used (as with EKF- or FastSLAM), but ensures atlipas
remain constrained to the trajectory of previouskjted
locations. The particle update is performed byt firs
generating a proposed posérom the nonlinear vehicle
modelf with additive Gaussian noise

0 = £ (x,u,)+w, (21)

For a vehicle moving in three degrees of freedom th
motion model is as follows:



a)

z, x¥ :argmaxP(xk |i£’)

xeT

b)

o D _ 0 ply® [ @ ® | 2O
z, W —WHP(Zk Ix; )P(xk [x, )

Figure 4 — Update process of CAT-SLAM particlesPajticlex(’, are constrained to the trajectory between prevouislted locationsy.
b) Proposed particle locatioR$’ are sampled from the motion model with control inpu ¢) The updated position on the trajectofyis
found at maximum likelihood location of distribuhi@(xk |>‘<‘k')). d) The particle weighis updated using the motion likelihood
observation Iikelihoo@(z‘k') |x‘k')), wherez, is generated using a continuous appearance model.

X, +AX, cos{é’k +A6’k)—Ayk sin(é’k +A6’k)
f(x,,u,)=| v, +% sin(@, +A8,)+ Ay, codd, +46,)
6 +Ag,

(22)
where u, :[Axk Ay, Aek]T The proposed covariance
is generated by linearising the motion model at the
proposed location with noise covariar@g

i i )T h_ & X(i_)l,u
Z(k):‘]li)Qk‘]lE)’ ‘]15): (éj k)

From this, a distribution over all possible poses de
represented using the standard multivariate Gaussia

1
2m |z,

(23)

P(x|%,)= exd(x-%, )£, (x-%, )] (24)

The location of the particle on the trajectory asifid by
searching the trajectory for the continuous indefor
which the above distribution is maximized:
t® = argmaxP(x(t)|x") (25)
tsk
From this index the pose of the patrticle is seth® most
likely pose on the trajectory:

X0 =x(t°) 26)

The maximum motion likelihooB(x | X, )is stored for later
use in particle importance weighting.

3.2 Continuous Appear ance Representation

In order to generate the observation model of egua
for a continuous trajectory based system, a coatisu
representation of appearance is required. Conwvealtio
geometric SLAM systems such as MonoSLAM [Davison
et al., 2007] perform this using 3D feature locasion a
fixed co-ordinate frame; however as stated abowe th
purpose of this algorithm is not to locate featureSD
space. The location representation for each partil
derived from that presented in equation 9, butredee to
represent appearance between discrete observai®ns
follows:

{ple =11, =1}

The method of generating these interpolated appeara
representations is dependent on both the continuous
vehicle motion model and the camera model. Howduer,

the simple linear case of equation 15, the contisuo
representation of appearance can be generatecddingb
follows, by interpolating between two successivectite
observations:

P(e =1|x(t) = W‘t)P(e. =1 Zm)
+ (t _\_tJ)P(e. =1 Zm)
As with FAB-MAP, the set of visual wordsthat form the

(27)

(28)



observation and appearance representation mustrived
from training data in a similar environment to ttest
environment.

3.3 Importance Weighting

The importance weighting of the particles is dranom
the numerators of equation 7 and 10; it combines th
observation likelihood of FAB-MAP using the contous
representation of appearance with the motion pabr
FastSLAM conditioned on the trajectory. By only
evaluating the motion and observation model once pe
particle, updating the weights can be performembimstant
time proportional to the number of particles redgss of
the number of previously visited locations. Thepmsed
weighting of each particle is as follows:

W =wOP(z, X0 )P OT [x0,u,)  (29)
The observation likelihood makes use of the Chow Li
distribution as in equation 11 at locatioon the trajectory:

Ple. 1x?)=Plz 146 )] Pl 12,.x67)) @0

q=

The leftmost part of equation 28 is calculatedddies:

Pz, 12, ("))
= %}P(zq le,=s,z, )3(6, =s|x(t"))

where P(zq le, =s, zpq) is the detector probability and

Ple =s|xt")) is the continuous appearance
representation defined in equation 26. The motidor s
the maximum likelihood point of the motion distrtimn
along the trajectory as found in equation 23:
Pl OT [, u,)= Pl 1)

k-17

(31)

(32)

To represent the likelihood of a location not ore th
trajectory (similar to the denominator term in eipral?2),
an additional particle representing an ‘unknowns@as
required. The weight of this particle is calculated
follows:

W =Pz, 1% )P 1u,) (33)
Note that this particle does not update using lies/ipus
weight but is re-normalised at each step; thisesgnmts the
uniform likelihood of departing from a previouslisied
section of the trajectory at any point in time. Tiveo
distributions can be approximated using informafimm
training data as follows:

Pz, 1P 1u,)= Pz, 12, Plu,, lu.)

Wherez,,4 represents an ‘average’ observation aggan
‘average’ control input. These can be found by $mp
averaging all observations and controls in theningi data
set, or by using the random sampling method in &Boua
13. Without this ‘unknown’ pose particle, the pelei
distribution represents pure localization, sincee th
probability of a pose not on the trajectory is assd to be
zero.

(34)

3.4 Particle Resampling
The proposed weight of each particle is normalisedh

that the sum of all weighs of particles on theetcspry plus
the ‘unknown’ particle weight is equal to 1.

A0
Wk

(i) —
W S SN e
Al A
ijk +Vv|:

(39)

The particles are resampled when the effective tasipe
(ESS) falls below a predefined threshold [Liu ef 2001].
The ESS is computed as follows:

N
ESS=
1+ 4 > [N -]

(36)

Particles are selected with probability proportidiaheir
weightwy using the Select with Replacement method [Liu
et al.,, 2001]. Any particles selected to replace th
‘unknown’ particle are sampled to a uniform random
location on the trajectory as follows:

0 U0k XY = (")

This serves to counteract the effects of partielgrivation,
since the proportion of particles sampled to digers
locations on the trajectory increases (therebyeiasing the
probability of detecting loop closure) as the ‘uatum
place’ likelihood increases.

@37

3.5 Trajectory Distribution Calculation

To determine the most likely location hypothes@frthe
distribution of particles a spatially selective hmd is
used, equivalent to integrating the probabilitytritsition
over a short distance along the trajectory. Theevalf the
distribution at particle locatiory is as follows:

Pl)= —Zl" L Sv’uj) (38)

The spatially selective functidii, j) is defined as follows:
(i) () —y(®
nj)= " = (39)
0 otherwise

The distribution will therefore only reach a probigypof 1

at any location if all particles are within distend of the
hypothesized location (causing the numerator to uf),
and the ‘unknown’ location weight is equal to O.

4 Experimental Procedure

The following section details the steps taken taleate the
proposed CAT-SLAM algorithm. Since the primary fecu
of this algorithm is improving loop closure perfance
and not map construction, the experiment will beuted
on comparing it to FAB-MAP in a large outdoor
environment.

4.1 Experimental Setup

This experiment uses a dataset previously gatHeretie
full-day mapping experiment presented in [Gloverkt
2010]. The dataset consists of video captured ditslbes
per second from a forward-facing Logitech QuickCRra
9000 webcam mounted on the roof of a car, as weBRS
data gathered at 1Hz for ground truth. The imageiseged
by the camera have a resolution of 640x480 pixels,
representing a field of view of 62 degrees horiabhy 46



degrees vertical.The GPS lock remained consist
throughout the entire route.

The route taken by the car is &km tour of a
surburban road network, pioced in Figure5, with
multiple repeated loops and wide variation in the type
roads traversed; from wideldne main roads to single la
roads bordered by dense foliage. The dataset we
gathered at midday to reduce the likelihood of ig
saturationdue to direct sunlight. No modification of t
environment or interruption of normal traffic cotidns
was performed.

4.2 Algorithm Details

The codebook and Chow Liu tree used for both -MAP
and CAT-SLAM are derived from the experimer

1.0 km

1.55 km

Figure 5 —Test environment consisting of a 16km road netv
covering approximately 1.5 square kilometr

Table 1 -Summary of algorithm paramete

FAB-MAP
P(z=1=0 0
Detector model (z=1p=0)
P(z=0=1) 0.61
New place likelihood|  P(LnewZ<Y) 0.9
CAT-SLAM
P(z=1=0 0
Detector model (z=1p=0)
P(z=0=1) 0.61
) . Gy 0.05 metres
Motion uncertainty )
oy 0.05 radians
Number of Particles N 2000
Minimum ESS
threshold ESS 0.25
Local distribution size d 2.5 metres

presented in [Milford et al., 2008a3URF features wel
extracted from 7000 noaoverlapping images sampl
from a larger dataset of the same suburb, resulti a
codebook containingg730 visual words. The avera
observation was derived from this same datasegjubie
mean field approximation.

Odometry information was generatdfrom visual
information using the method presente{Milford et al.,
2008b]. While this semi-metrimethod is not as pcise as
feature-based approachest does not require tr
calculation of featurecorrespondencor geometry and
produces repeatable results in successive tragevfahe
same location.

The list of constants used in both algorithms
presented in Table 1For evaluation, the maximu

distance between the expected and actual GPSdadati
a true positive loop closure was set to 20m, ttecethe
large scale of the dataset.

5 Reaults

This section describes the nping results of both
FAB-MAP and CAT-2£AM on the 16km suburban ro:
network. The primary performance metric is the
precisionrecall curve, where precision is defined as
number of correct matches divided by the total nends
matches, and recall as the number of correct ms
divided bythe total number of expectimatches:

, Recall= L (40)
+FP TP+FN

where TP are true positives, FP false positivedénhthlse
negatives. Expected correct matches are defined
previously visited GPS locations within 20m distarand
10 degrees heading tthe current location, to avo
unreasonable loop closure expectati((such as when
crossing intersections from different approay).

To use either of these systems to detect loop Kk
for a semimetric or metric SLAM syste a precision of
100% is equired, since false positive matches can ¢
catastrophic failure during mappifor geometric systems
[Thrun et al., 2008]ln this respect, the desired outcom
a high recall rate at 100% precisiHowever, analysis of
the false positives reported by botlstems is important to
deermine the likely failure modes in other environts

Precisiorr

5.1 Precision-Recall

Figure 6 shows the precisicrecall curve for both
FAB-MAP and CATSLAM on the full road network

Precision

FoYe) S CTTI KR KISt SERHEE SYEeTP s R
Pyl —— FAB-MAP : : : : i

L i H
0 0.1 02 03

04 05 08 Q7 0.8 09 1
Recall

Figure 6 — Precision-recaluove for CAT-SLAM and FAB-MAP
for the 16km trajectory. At 100% precision, C-SLAM recalls
59% of the correct matches, where F-MAP only recalls 19%.

Note the scale on theaxis; both algorithms report ov
90% precision over more than 80% of the rerange.
However, FABMAP 1.0 achieves only 19% recall
100% precision, where CASLAM recalls over 59% of
locations successfully. T poor performance of
FAB-MAP in this environment compared to previc
FAB-MAP experiments can be attributed to the usa
single forwardfacing camera, as opposed to multi
wide-angle[Cummins et al., 2008 or omnidirectional
[Newman et al., 200 cameras. The geometric
post-verification ifCummins et al., 200' was not used.
Below 96% precisio, FAB-MAP provides superior



recall rates to CAT-SLAM. Since FAB-MAP compares th
current location appearance to all previous locatiohere
CAT-SLAM only compares to previous locations where
particles exist, it is possible that if the paridiversity is
sufficiently low occasional loop closures will nde
detected. This does not appear to have a signifeffect

on the results, as even at 90% precision CAT-SLAM
provides almost 90% recall.

5.2 Loop Closure Performance

Figure 7 shows the loop closures projected on ¢0GRS
positions recorded on the route for four separatching
cases. Figures 7a) and 7b) show the loop clos@testeéd
by FAB-MAP and CAT-SLAM for the threshold that
provides maximum recall at 100% precision. The darg
number of green true positive loop closures ilatgtrthat
CAT-SLAM correctly relocalises more often than
FAB-MAP. Additionally, the true positive loop closes
are approximately evenly distributed across the amd
not concentrated in particular locations of unigisual
appearance.

The relative distributions of true positive andséa
negative loop closures are of note: FAB-MAP tendls t

switch between true positive and false negativechest
within the space of a few metres, where CAT-SLAM
typically has unbroken sequences of 20m or morés Th
reflects the sequential matching nature of CAT-SLAM
requires a number of correct visual and odometstchres
before a sufficiently dominant hypothesis is formed
However, once such a hypothesis is dominant, it is
maintained until particles not within the local tdisution
distanced are sufficiently supported by novel visual and
odometric information to suggest an alternate hypsis.

Figures 7c¢) and 7d) show the loop closures detecte
at 95% precision. While both algorithms presentgnal
fraction of false positives, FAB-MAP appears tatidmite
them more evenly across the dataset. The trajebesgd
matching characteristics of CAT-SLAM cause it to
maintain even false positives (provided there §igant
false visual and odometric information). Intereghyn all
sections reported as false positives by CAT-SLAMurc
on straight sections of road; in these cases thg#omo
model provides sufficient weighting to remove loop
closure candidates that are geometrically dissimailang
the trajectory.
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5.3 Computational Complexity

Currently CAT-SLAM requires approximately 1ms per
particle update on a single core 3GHz Core 2 psmes
comparable to early FAB-MAP implementations
[Cummins et al., 2007]. The majority of this tingespent
evaluating the observation likelihood. CAT-SLAM is
unsuitable for real-time application in its curreotm;
however, since each particle is independent, theridhm

is highly parallelisable. However, every past obagon
must be stored, so the appearance-based map gmows i
memory requirements in proportion to the number of
observations.

6 Discussion

The results of the mapping experiment demonstritet
the combination of both appearance and motion
information in CAT-SLAM provides a clear advantage
over appearance-based SLAM systems that rely aralis
data alone for applications that require 100% pgieni
loop closure. The improvement over FAB-MAP is
twofold; first, the addition of a pose filter allsvgpurious
false positives to be rejected, and it allows aation
hypothesis to be maintained with only partial visua
matches.

Since CAT-SLAM is built upon the same underlying
appearance-based matching system as FAB-MAP, its
performance at identifying an initial loop closuig
approximately equal. Due to the trajectory follogin
properties of the particles, CAT-SLAM can maintan
hypothesis across a number of frames when supgortin
visual information above the hypothesis threshelaot
available for all frames, as is the case with FABM
This greatly increases the recall rates as enticéans of
trajectories can be matched, rather than simplividdal
frames.

However, the requirement for a sequence of familia
visual and odometric information reduces the spatd
which CAT-SLAM is able to generate a new location
hypothesis. While FAB-MAP can localize using only a
single frame, CAT-SLAM requires a number of paticl
update (and possibly resample) stages; revistimgt sh
sections of a path (such as crossing an intersefioon a
different approach) may not be detected by CAT-SLAM

The computational advantages of a fixed number of
particles representing a distribution could allow
CAT-SLAM to scale to much larger environments than
other appearance-based SLAM systems, provided
sufficient particle diversity is maintained.

6.1 FutureWork

There are a number of improvements that can be nmade
many aspects of the current CAT-SLAM implementation
to improve its performance.

Currently the linear approximations in equatioss 1
and 28 cater to the vehicle model used. Howevar, fo
holonomic vehicles which do not necessarily revisit
previously traversed trajectory with an identical
orientation, these approximations will not suffiéplicit
decoupling of orientation with trajectory will bequired
to support holonomic vehicles and similar platforms

The linear interpolation of appearance in equa2®n
does not capture the true nature of changing appear
with respect to motion. A more sophisticated mettid
incorporates feature-based optical flow withoutleating

3D feature geometry is currently in development.

The principles behind the Bennet bound and inderte
index of later FAB-MAP implementations [Cummins et
al., 2008a; Cummins et al., 2009] are equally ahlie to
CAT-SLAM. This would significantly reduce the
computation time taken to update the particle wisigh
since the observation likelihoods could be deteeain
using a batch update method. As mentioned, theitigo
is highly parallelisable, and could provide reati
performance on modern parallel or GPGPU processors
without additional computational enhancements.
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