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Abstract

In this work we present a novel approach to
learning dynamics of an environment perceived
by a mobile robot. More precisely, we are in-
terested in general motion patterns occurring
in the environment rather than object depen-
dent ones. A sampling algorithm is used to up-
date a sample set, which represents observed
dynamics, using the Bayes rule. From this set
of samples a Hidden Markov Model is learnt
online, which allows fast and efficient match-
ing and prediction in the learnt model. Such
models are useful for a number of tasks such as
path planning, localisation and compliant mo-
tion. The approach is validated through simu-
lation as well as experiments.

1 Introduction

Mobile robotic systems are often deployed in controlled,
often static, environments, as it is difficult to handle
highly dynamic situations efficiently. There are a num-
ber of techniques to deal with some of the dynamics,
such as door state estimation [Avots et al., | or to avoid
dynamics in the observations. This can be achieved by
pointing the sensors in a favourable direction as done on
Minerva [Thrun et al., | or by using tracking algorithms
so that other components of the robotic system will have
minimum interference with moving objects [Roy et al.,
.

These techniques were successfully employed and are
good measures to enable robust localisation and map-
ping. However, this leaves valuable information almost
completely ignored. Having a priori knowledge about
dynamics in a given environment could be used for lo-
calisation as well as path planning and other tasks.

Thus far, most work in the field of learning dynamics
was done in video surveillance, where a number of as-
sumptions can be used, which ease the problem. Com-
mon assumptions are the presence of a stationary ob-
server; always seeing complete trajectories from start to

end and tracked objects having similar, sometimes con-
stant, speed. For examples and further references see
[Makris and Ellis, 2001], [Swears et al., ] and [Govea et
al., .

In the domain of mobile robotics these prerequisites
cannot be guaranteed. Therefore, researchers are fo-
cussing on the development of learning algorithms based
on environment monitoring. However, so far we are only
aware of publications where static observers are utilised.

Bennewitz et al. [Bennewitz et al., | developed a
method to learn a model of dynamics in an office envi-
ronment which was used for a mobile robot. Even so, the
learning phase relies on stationary sensors and the ob-
servation of complete paths and learning is done offline.
Also in this work start and end points of a path must
be learnt and it is assumed that motion always happens
between those points (e.g. object starts at start point A
and ends at end point B).

Vasquez et al. [Govea et al., | propose growing Hidden
Markov Models (GHMM) to incrementally learn motion
patterns in an area. This allows for online learning but it
is still assumed that the sensor is mounted in a fixed loca-
tion, which limits the usefulness of the proposed method
for mobile robots.

In this work we propose a novel approach to learning
typical motion patterns (dynamics) in a given environ-
ment based on a sampling methodology. In this way the
model can be learnt incrementally and can in principle
be used on a mobile platform. Furthermore, a method is
proposed to extract a Hidden Markov Model which can
be used for efficient evaluation of the model of dynamics.

The remainder of this publication is organised as fol-
lows. In Section 2 we present our method to learn
dynamics by sampling. Section 3 then introduces the
reader to Hidden Markov Models after which our ap-
proach to learning a Hidden Markov Model of motion
patterns is described. Furthermore, we present results
in sections 4 and 5 and finally discuss our conclusions
and outline of future work.



2 Learning a model of motion patterns

In this section we introduce our proposed methodology
for learning motion patterns. We want to build a model
of generally occurring motions in a known environment.
In the following the existence of an object tracker is as-
sumed, from which we expect to get a position of a mov-
ing object and a prediction of where this object will be
in the next time step. For readability the method will
be formulated for a single target tracker as the extension
to multiple targets is straight forward.

2.1 Object Tracking

For object tracking we use an implementation of an in-
teracting multiple model tracking algorithm [Blom and
Bar-Shalom, |. To simplify the description and notation
in the following sections, we assume the tracking algo-
rithm, as outlined below (also see Figure 1).
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Figure 1: Diagram of the tracking algorithm

In every time step ¢ the tracking algorithm produces
a single estimate z; of a moving objects position.

P(xt) = P(xe|we—1, 2t) (1)

with x; being the state of the tracked object and z;
the observation at time t.

The tracker also reports the predicted position of the
tracked object.

P (x1) = P(t|zi-1) (2)
Estimate and prediction should be reported as mean
w1 and covariance Y.
2.2 Motion Sampling

A probability distribution P(D) exists which represents
the occurrence of motion in any point of space. This can
be expressed as

P(D) = P(z,y,0,v) (3)
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where x — y denotes a coordinate in the 2D plane, 0
is an angle and v denotes the speed of a motion. Thus,
P(D) is the joint probability of the simultaneous occur-
rence of a particular x—y—60—v. Arguably, this distribu-
tion can be complicated and therefore, an approximation
is needed which can be learnt. Naturally, learning can
be done by observing the system and trying to extract
a model and its parameters. For observing the afore-
mentioned moving object tracking is used in conjunction
with localisation.

Hence, P(D) can be approximated by a model P(D;)
at time t using the observers state o; and observations
Zt-.

P(D) =~ P(D¢|o1.4, 21:4) (4)

where D, incorporates all observations up to time ¢.
Clearly this distribution is complex and thus, it is dif-
ficult to learn the parameters. Therefore, we propose
to approximate this probability distribution by a set of
weighted samples

Xy = (o w), 1<i<N (5)

with X; being the sample set at time ¢, consisting of N
samples xii) and wgi) being the weight of the i-th sample.
Each sample represents a probability of the occurrence
for a certain kind of motion.

Hence each sample acgi) is defined as
(9
s (4)

W)

We combine the sample sets X; ; in

Dy = (X1.4) (7)

Hence, we obtain the approximation

D; ~ P(D) (8)

This approximation can be updated using the Bayes
rule, utilising the prediction (eq. 2) and update (eq. 1)
from the tracking algorithm. With new observations the
sample set will grow in order to incorporate new infor-
mation. To make sure that no redundant information is
kept and to control the number of samples a subsampling
procedure is used. The result of this procedure can be
seen in Fig. 2(a), where one object moving from the left
to the right was observed. Fig. 2(b) shows the sample
set after a number of similar observations.

Obviously, such a model can grow to a substantial
size using a lot of memory and facilitating the model for
matching and prediction of observed motion would be
computationally expensive and non trivial. Therefore,



we use the sampled distribution to incrementally learn
and update a Hidden Markov Model as described in the
following section.
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Figure 2: a) The object (green rectangle) moved from
the left to the right. The dark points denote samples
generated from the trackers prediction. The green el-
lipses denote the covariance after weighing the samples
according to the most recent observation of the target b)
The sample set D, after more objects were observed.

3 Efficient Representation

To decrease computational complexity and memory foot-
print, we derive a Hidden Markov Model (HMM) from
the sampled distribution. This part first introduces the
reader to HMMs and then describes how to incremen-
tally learn and update an HMM, which will approximate
Dy. Finally, model matching and prediction will be dis-
cussed.

3.1 Hidden Markov Models

A Hidden Markov model (HMM) is a statistical model
that represents a system as a directed graphical model.
Here we briefly outline HMMs following the notation
used by Rabiner [Rabiner, ]. HMMs are defined by N
states of a system S = s',s?,...,s"V, together with the
observation symbols V' = v!,v?, ..., o™ with M being the
number of symbols.

A state transition probability distribution A = a;; is
given as

aij = P(ger1 = sV)gr = sV), 1 <i< N
1<j<N

(9)

Furthermore, the observation probabilities in state 7,
B = b;; are formulated as

bij = P(U(i)|s(j)), 1< i. <M (10)
1<j<N
Finally, the initial state distribution m = 7; is defined
as

mi =Pl =s9),1<i<N (11)

Most HMM frameworks highly depend on prior knowl-
edge of the topology of the model and learning is with
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previously obtained data. There is no easy way to up-
date these models over time [Rabiner, |. Thus, these
implementations are not suitable for the application at
hand. There are numerous, usually application depen-
dent, derivatives of hidden Markov Models reported in
the literature and we will briefly refer to the ones most
relevant to the presented work.

The idea of using HMMs to model dynamics is not
new, however, comparatively few publications are found
in the realm of mobile robotics. The use of a hierarchy
of HMMs to describe motion patterns on different lev-
els was proposed in [Liao et al., ]. However, the topol-
ogy is given and learning is done offline. Vasquez et al.
[Govea et al., | propose Growing Hidden Markov Models,
which can be learnt incrementally, so the topology is also
learnt online. Still, the assumptions that are made, pre-
vent their use in practical mobile robotic applications.
In particular, complete trajectories must be observed,
meaning objects always have to be seen from the start
of the path to the very end and the observer is in a fixed
location.

In contrast, in the following section we will present an
approach which allows to efficiently learn and update an
HMM over time, which does not assume full observability
of trajectories.

3.2 Deriving a Hidden Markov Model

Sampling the states
When creating the model, we do make the assumption
that when an object moves the performed motion at time
t is independent from ¢ — 1 in order to be able to use a
first order Markov Model. Using the sampling algorithm
described in Section 2.2 we obtain samples with a fixed
frequency with the result that we get a sequence of clus-
ters of samples.

These clusters can be interpreted as estimates of the
states the object has been in and hence, we use the sam-
ple statistics to define the estimated states s(*)

) (1)
S:S(z):[;(i)] 1<i<N (12)

with ©(?) being the mean, ©(*) is the covariance of the
i-th sample cluster and N is the number of states. A 2D
projection of a state can be seen as the covariance ellipse
in z and y (see Figure 3).

Whenever another moving object is observed in a re-
gion where a model was previously learnt, the statistics
of states are updated by combining the according sam-
ple clusters. Therefore, the time dependency needs to
be incorporated into the definition of a state,

St:s@:[;t(i)] 1<i<N (13)



However, for better readability this time dependency
will be omitted in the following.

By observing a moving object, the resulting cluster
can be seen as the j-th state s¢)~ in the path of the
object. The superscript “—” means that this is either
a new state or may add new information to an already
existing state. To decide whether the robot observed
something new or got new information concerning the
existing model, we regard s() and s)~ as probability
distributions which we can compare using a symmetric
version of the Kullback-Leibler divergence (KLD)

KLD(sW|sW7) 1 <i< N (1)
1<j<K

where K is the number of clusters from the tracked ob-
jects path. If the KLD is below an adaptive threshold,
the sample clusters are combined and the state statistics
change accordingly. To avoid growing computational ef-
fort with a growing model, we only calculate the KLD
for clusters which are closely located in the zy plane.

Learning transitions

The sequence of clusters also implies the sequence of
transitions. Thus, we define transitions between the
states we just learnt, resulting in a transition matrix A.
Each individual transition a;; is defined as

AT
aij = N, (15)
P(s)]s)

where AT is the time from the first observation of the
transition until the last observed occurrence, N, denotes
the number of times the transition was observed and
P(59)|s() is the transition probability from state s(*)
to state s¥). An example for a resulting model after an
object was observed for some time can be seen in Figure
3.

AT together with N, is useful as a measure of traffic
density. Of course, this value only gets interesting with a
reasonable number of observations. NV, is needed to up-
date the transition probability using new observations.
Naturally, the probability is calculated as

P(s)|s) = =0T (16)

k
Zj:o Nij
N;

With £ being the number of outgoing transitions from
state ¢, IV; is the sum of all observations of outgoing tran-
sitions and IN;; denotes the number of times one partic-
ular transition a;; was seen.

It is to be noted that once the robot observes an ob-
ject moving along an already known path (i.e. a model
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is learnt already) the transition probabilities can be up-
dated by just counting. This phenomenon is illustrated
in Figure 5 in Section 4.

Figure 3: a) Objects (green rectangle) were observed
moving from the left to the right along the wall, and sam-
ples (dark dots) were generated accordingly. b) From the
resulting sample set Dy, states (red ellipses) are learnt.

3.3 Evaluating the Model

The learnt HMM can be used for predicting future poses
of moving objects and matching observed trajectories
to the model. This can be achieved using standard
HMM algorithms, however, considering the computa-
tional complexity it is preferable to evaluate the model
locally.

Matching an observed trajectory to a learnt model is
done by only taking nearby states into account. For this
smaller part of the model the forward algorithm [Ra-
biner, ] can be utilised. Prediction can be done by esti-
mating in which state of the learnt model the object is
most likely. From there the transition probabilities can
be used for predicting into the future. Since the model of
dynamics also encodes velocities, it is possible to predict
future poses and speed.

When evaluating bigger parts of the model, it may
be necessary to introduce an additional normalisation
step as two paths which lead to the same goal are not
guaranteed to have the same number of states. In any
case, the further the algorithm predicts into the future
the less confident it is about the estimate.

4 Simulation Results

Model dynamics

In the first experiment we present the dynamic behaviour
of our model of dynamics. Assume an observer sees peo-
ple moving down a hallway and builds a model as shown
in Figure 4(a). In this example the red ellipses denote
the states, the green edges are the transitions between



states and the green arrow below the model indicates the
direction of the transitions.

At some point an obstacle is put into the learnt path,
so that people now have to slightly alter their trajec-
tory (Figure 4(b)). In Figure 4(c) to 4(e) it can be seen
how the model is adjusted, given the new information.
In fact, the mean and covariance of the affected states
changes significantly.

Figure 4: a) Shows the initially learnt model. Red el-
lipses show the states ,the green lines denote transitions
and the green arrow indicates the direction of the mod-
elled motion. b-e) After an obstacle was introduced in
the originally learnt path, objects move around this ob-
stacle and the model changes by shifting the mean of
some states.

We repeated the same experiment, but changed the
location of the obstacle such that people had to change
the trajectory even more (Figure 5(a)). The result is
that a new path is added to the model (Figure 5(b)).
After enough observation, we can also see that the new
path now has a higher probability, which is indicated by
the thickness of the edge between the states.

The 5 o’clock model

Suppose we have an observer overlooking most of the
office space shown in Figure 6. The coloured arrows
denote trajectories of people, who will leave the office
around 5pm, which the observer will see in the following
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Figure 5: a) Shows the initially learnt path. The thick-
ness of the green transition lines denotes the probability
of a transition. b) Again an obstacle was introduced. In
this example the change in path is bigger, so a new path
is added to the model.

simulation.

Figure 7 shows the learnt model after 25 observed tra-
jectories. The red ellipses represent the state covariances
and the red edges are the transitions. Each transition has
a direction, which is indicated by the green arrows. The
model is learnt online, meaning that no postprocessing
is taking place and trajectories are incorporated into the
model as they are observed.

Then an obstacle is put into a path, which can be seen
in Figure 8 as a yellow rectangle. Now people have to
choose different ways. As they do this the new paths are
learnt (having a yellow arrow to indicate the new paths
diretcions) and become part of the model.

It can be seen that new paths can easily be included
into the model, as well as states can shift their mean
and change the covariance, according to new informa-
tion. Figure 8(b) highlights part of the model. In this
figure the thickness of the red edges indicates the tran-
sition probability and it can be seen that the transition
from A to E, which was learnt before the obstacle was
introduced is lower than the transition probability A to
B.

It can also be seen that the transition from C to D
became less likely than the transition C to F after the
obstacle blocked the way for a while. Thus, again high-
lighting the dynamic properties of the proposed mod-
elling method.

Finally, Figure 6 shows the raw sample set from which
the above presented model was built.

5 Experimental Results

In early experiments we used a stationary observer with
a position estimate. In Figure 9(b) the estimated posi-
tion of the observer is shown as a red triangle which also
indicates its heading. The sensor is a Sick LMS 291 laser
scanner.

In Figure 9 and 10 the green arrow denotes the di-
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Figure 6: Part of the map of our office space (appr.
18x22m). The coloured lines show which pathes are ob-
served. The observer can overlook most of the area. The
green points represent the sample set from which the
HMM in Figure 8(a) is learnt.

Figure 8: a) An obstacle (yellow rectangle) was inserted
into the environment, blocking a path. As objects have
to choose different trajectories now, the model adapts
accordingly. The yellow arrows denote the models di-
rection where new paths were added. The green arrows
indicate the models directions where it was learnt before
the obstacle was introduced. b) Close up view on part
of the model. The transition probabilities are indicated
by the width of the edges.

Figure 7: The motion model after 25 observed trajecto-
ries. The states of the HMM are shown as red covariance
ellipses with a rectangle denoting the mean. The state
transitions are shown as red edges, the green arrows in-
dicate the models direction.



rection of motion of the objects that were tracked. Note
that the obstacle marked with an “A” is just a low bench
which did not obstruct the robots vision.

In the experiment people walked past the robot and
turned left, following the green arrow. In Figure 9(a)
the object was not immediately detected, resulting in a
slightly shorter initial model. In subsequent observations
the tracker picked up objects earlier and thus new states
were added to the model (see Figure 9(a)).
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Figure 9: a) The observer (red triangle) overlooks most
of the shown area. Objects pass the robots position fol-
lowing the green arrow. The red ellipses and edges show
the initial model of motion patterns. b) Due to new
information new states are added.

To verify the simulation results shown in Figure 5 we
let objects deviate from the learnt path, thus forcing
the algorithm to extend the model as seen in Figure 10.
Hence, it can be seen that the results from the simulation
experiment are also valid for real world experiments.

— 1 — 1

(a) (b)

Figure 10: a and b) Objects deviate from the learnt
model forcing the algorithm to learn a new path.

6 Conclusions

In this publication we presented a novel approach to
learning models of motion patterns. A sampling algo-
rithm is proposed which allows for online learning and
updating a Hidden Markov Model. It was shown that
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motion patterns in larger areas can be learnt and new
paths can be easily added to the model.

Such a model can be used for various tasks, such as
path planning, moving object tracking and many more,
which we are currently embarking on. Furthermore, in
the near future we expect to scale such a model to 3D
space without having to substantially increase the com-
putational effort and memory demand.
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