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Abstract

This paper presents a framework for perform-
ing real-time recursive estimation of landmarks’
visual appearance. Imaging data in its origi-
nal high dimensional space is probabilistically
mapped to a compressed low dimensional space
through the definition of likelihood functions.
The likelihoods are subsequently fused with
prior information using a Bayesian update.
This process produces a probabilistic estimate
of the low dimensional representation of the
landmark visual appearance. The overall filter-
ing provides information complementary to the
conventional position estimates which is used
to enhance data association.

In addition to robotics observations, the filter
integrates human observations in the appear-
ance estimates. The appearance tracks as com-
puted by the filter allow landmark classifica-
tion. The set of labels involved in the clas-
sification task is thought of as an observation
space where human observations are made by
selecting a label.

The low dimensional appearance estimates re-
turned by the filter allow for low cost com-
munication in low bandwidth sensor networks.
Deployment of the filter in such a network is
demonstrated in an outdoor mapping applica-
tion involving a human operator, a ground and
an air vehicle.

1 Introduction

Target tracking is conventionally thought of as the prob-
lem of estimating the location and velocity of one or more
stationary/moving targets given a motion model and a
set of sensor measurements. Due to imperfect models
and sensor noise, multiple objects may become impos-
sible to distinguish. A number of schemes exist in the
literature to address these problems [Fortmann et al.,

1983] [Pao, 1994] [Reid, 1979]. Each of these methods
can be improved with richer information than just lo-
cation and velocity. To achieve this goal, we propose a
filtering framework generating probabilistic appearance
estimates which, combined with position estimates, en-
hance data association.

This framework has been motivated by the problem
of performing data association with bearing only obser-
vations. As illustrated in Fig. 1, the large uncertainty
in bearing only information provided by a monocular
camera does not allow for robust tracking (bearing only
tracking is here implemented as in [Upcroft et al., 2005]).
Fig. 1(b) shows two overlapping bearing-only observa-
tions generated by two different landmarks. Data asso-
ciation between these observations based only on posi-
tion information will fail resulting in a single track (Fig.
1(c)). However, discrimination can still be achieved us-
ing richer information combining position and appear-
ance states. The proposed filtering scheme provides a
mechanism to estimate such appearance states.

2 Related Work and Contributions

Within the robotics community, data association using
visual descriptors in addition to position information has
been addressed in [Davison et al., 2007] [Goncalves et al.,
2006] [Ho and Newman, 2005] [Jensfelt et al., 2006] [Luke
et al., 2005] [Newman et al., 2006] . However, none of
these techniques probabilistically update the perceived
appearance of a feature as more observations are ob-
tained. This work presents an attempt to process visual
cues in a filtering framework similar to classical position
estimation. One solution to this problem was recently
proposed in [Ramos et al., 2006] but no experimental re-
sults were reported. This paper provides the derivation
of a different approach and demonstrates the algorithm
with an outdoor robotics system.

Recursive filtering over visual properties has been
demonstrated in a number of ways. The contribution
of this work lies in the following aspects. (1) Esti-
mates of landmarks’ visual appearance are low dimen-
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Figure 1: (a) A ground vehicle equipped with a monocular colour camera circled the two landmarks in the image: a
tree and a red car. (b) A bearing only observation of the tree and of the red car are represented as two conical sets
of ellipses. The ground vehicle is represented by a red rectangle and its trajectory indicated by the red curve. (c)
Data association based only on position incorrectly causes the two observations to be fused into a single estimate
shown here as a single set of compact ellipses.

sional which allows their efficient communication in low
bandwidth networks. The deployment of the filter in a
sensor network comprised of a human operator, an air
and a ground vehicle is presented in Sec.6. (2) A closed-
form solution of a general likelihood function is proposed.
The derivation of the likelihood model avoids the Gaus-
sian assumption made in [Lim et al., 2005] [Wang et al., ].
This model is general since it is not restricted to the rep-
resentation of one object as in [Roth et al., 2004] but can
represent the observation of any object in the Bayesian
update. (3) The filter is able to process multi-modal
inputs. A unique aspect of this framework is to allow
both robotics and human observations to be fused to es-
timate a landmark’s visual appearance. (4) The space in
which the estimate is defined is continuous which avoids
an arbitrary discretisation of the state space as required
in [Rottmann et al., 2005] [Torralba et al., 2003] [Up-
croft et al., 2006]. (5) An analytical formulation appro-
priate for real-time application is presented. This ana-
lytical framework does not involve any of the sampling
processes developed in [Han et al., 2004] [Han et al., ]
[Han et al., 2005]. Note that depending on the type
of appearance features used, the dimensionality of the
observation space may prevent any sampling methods
from being computationally tractable. (6) The concept
of evidence [Bailey and Durrant-Whyte, 2006] is inter-
preted as a dissimilarity measure and used to perform
measurement-to-track association. (7) With respect to
the companion papers [Kaupp et al., 2006] [Ramos et
al., 2005] [Ramos et al., 2006] [Upcroft et al., 2005], the
contribution of this publication is to set the theoretical
foundations of the filtering framework and quantify its
behavior through a mapping system run in an outdoor
environment.

3 Model of the Visual Environment

This section presents the probabilistic model of the vi-
sual environment from which human and robotic visual
likelihoods can be derived. The model is learnt off-line
from training data. This involves two steps: 1) deter-
ministic nonlinear dimensionality reduction of visual fea-
tures, and 2) the learning of a probabilistic model over
both the original high and resultant low dimensional
spaces. Note that the proposed model is independent
of any specific feature extraction algorithm.

3.1 Nonlinear Dimensionality Reduction

Most raw visual features exist in a very high dimensional
space and are not readily amenable to interpretation
and communication. For example, in our experiments
the features used are small patches from colour images.
Each of these image patches is represented by a 3D RGB
histogram with 93 bins resulting in a dimensionality of
729. To maintain the tractability of the estimation prob-
lem and allow cheap communication, visual features are
compressed using a dimensionality reduction technique.

Dimensionality reduction is traditionally performed
using methods such as Principal Component Analysis
(PCA) or its numerous variants. Although they pro-
vide theoretically optimal representations from a data-
compression standpoint, they are unable to provide
neighborhood preserving representations that are cru-
cial to data association. This limitation has moti-
vated the development of various nonlinear embedding
methodologies [Belkin and Niyogi, 2002] [Roweis and
Saul, 2000] [Scholkopf et al., 1998] [Tenenbaum et al.,
2000]. These non-linear dimensionality reduction tech-
niques presume that the data lies on or in the vicinity
of a low-dimensional manifold and attempt to map the
high dimensional data into this low dimensional mani-



fold. The Isomap algorithm [Tenenbaum et al., 2000] is
adopted in this work because it provides an estimate of
the manifold’s intrinsic dimensionality.

3.2 The Probabilistic Model

Integration into a Bayesian filtering framework requires
the definition of the likelihood p(z|x), describing the
measurement uncertainty of a state x, given observations
z. Here, we regard visual observations z, in the original
high-dimensional space as measurements of compressed
appearance states x belonging to the low-dimensional
space generated by Isomap. The Isomap algorithm and
indeed most nonlinear dimensionality reduction algo-
rithms are inherently deterministic. To model the prob-
abilistic quantity p(z|x), the joint distribution p(z,x) is
learnt from a sample set {(zi, xi)}, where xi has been
computed by Isomap.

Learning a joint probabilistic model over two spaces
with different dimensionality has previously been shown
by Ramos et al. [Ramos et al., 2005]. They proposed a
model to probabilistically cluster data in the high and
low dimensional spaces simultaneously. The low dimen-
sional part of this statistical representation conveniently
represents highly nonlinear manifolds such as the ones
generated by Isomap. It has the capability to model the
local covariance structure of the data in different areas of
the manifold. The graphical model of this probabilistic
representation is displayed in Fig. 2(a). It is parameter-
ized as follows (random variables are written in bold):

p(z,x) =
∑
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where the terms Ψs, µs,Λs,Σs, νs, p(s) are the parame-
ters to be learnt. D and d indicate the dimensional-
ity of the high and low dimensional space respectively.
Λsνs + µs and Ψs + ΛsΣ

T
s
ΛT

s
are the means and covari-

ances respectively of the mixture describing the high di-
mensional space. νs and Σs are their counterparts in the
low dimensional space. The Λs are known as loading ma-
trices locally modelling the mapping between z and x as
a linear transformation. The overall model is a mixture
of linear regressions. The variable s is a hidden vari-
able indexing one of the linear regression in the mixture,
s ∈ {1, . . . , N} where N is the number of components of
the mixture. N is defined a priori.

3.3 Parameter Learning

The learning scheme is based on a combination of Max-
imum Likelihood (ML) and Expectation Maximization
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Figure 2: Graphical models used to represent the visual
environment. Circles indicate continuous variables and
squares indicate discrete variables. Shaded nodes are
observed variables while unshaded variables are hidden.
(a) The joint distribution p(z,x, s). (b) Addition of hu-
man observations o. (c) DBN representing the filtering
over x.

(EM)[Dempster et al., 1977]. The joint model p(z,x, s)
is learnt using a typical set of observations {zi} and their
corresponding compressed representations {xi} given by
Isomap. Some observations from particular objects are
labeled manually. In the experiments, labeled subsets of
{zi} included observations of “trees”, “red cars”, “sheds”
and “white objects”. The parameters of the components
describing labeled data in the high and low dimensional
spaces are learnt using ML. Clusters of unlabeled data
points are captured automatically by applying the EM
algorithm.

3.4 Likelihoods given robotics and human
observations

From this model, the likelihood p(z|x, s) of the states x

given a robotic observation z, can be derived (derivations
are not detailed in this paper due to space constraints).
It is as a result general and represents any observation
z. When z is fixed to a particular observed value z, the
terms p(z|x, s) become likelihood functions defined by
the closed-form solution:

l(z = z|x, s) = αse
{− 1

2
[x−ms]T C−1

s
[x−ms]}

Cs = (ΛT
s Ψ−1

s Λs)
−1 ; ms = CsΛ

T
s Ψ−1

s (zt − µs)

αs =
e{−

1

2
[−mT

s
C−1

s
ms+(zt−µs)T Ψ−1

s
(zt−µs)]}

(2π)D/2|Ψs|1/2
(2)

Human observation is represented by the variable o in
Fig. 2(b). It is performed by selecting one of the labels
associated through learning to the components of the
model. Formally, an observation submitted by a opera-
tor generates a likelihood function p(o|s). It is encoded
as a discrete probability table and its online evaluation
is a simple table lookup. In the experiments, the table
entries were manually specified. Instances of this type of
likelihood are further described in [Kaupp et al., 2006].
Intuitively, a human observation results in the selection
of one of the model’s components which narrows down
the area in which the appearance estimate is likely to be.



Given the above likelihoods p(z|x, s) and p(o|s), ob-
servations of the visual environment o and z can be in-
corporated into a Bayesian filtering framework which is
described in the following section.

4 Recursive Filtering Over Visual

States

This section presents the formulation of two types of up-
dates: (1) updates given robotic observations and (2) up-
dates given human observations. These operations are
represented in the Dynamic Bayesian Network (DBN)
displayed Fig. 2(c). A novel way to perform track-to-
measurement association is proposed in the second part
of the section.

4.1 Bayesian Update with Robotics
Observations

With the assumption of a static visual environment
(i.e. the transitions encoded by the horizontal
edges in Fig. 2(c) are identity), it can be shown
that the general recursion is given by p(x|Zt) ∝∑N

s=1

∏t
i=0 l(zi|x, s)p(x|s)p(s), where Zt = {zt, . . . , z1}.

This update has a parallel structure suggesting that
recursive estimation of the visual states can be imple-
mented as a bank of N filters. In the following equation
one line corresponds to one of the filters performing in
parallel:

p(x|Zt)

∝ l(zt|x, s = 1) . . . p(x|s = 1)p(s = 1) +

...

+l(zt|x, s = N) . . . p(x|s = N)p(s = N) (3)

Each filter is initialized with the learnt prior p(x|s)p(s),
which is of Gaussian form. When an observation zt is
performed, the sth filter in the bank is multiplied by the
term l(zt|x, s) which is also of Gaussian form (Eq. 2).
Thus each filter in the bank only involves Gaussian terms
and as a result reduces to a linear Kalman filter.

The probabilistic representation of an observation zt

consists of the set of terms l(zt|x, s), s = 1 . . . N (Eq.
2). As a result a high dimensional observation zt substi-
tuted into the likelihood model l(zt|x, s) is passed onto
the filter in compressed format without dimensionality
reduction required.

The absence of explicit on-line data compression
through the use of the functions l(zt|x, s), and the up-
date reducing to N Kalman filters, results in a filtering
scheme which is computationally efficient and therefore
can be adopted for real-time applications.

The update of the weight of each filter in the bank
does not add significant computations. It is given by

p(s|Zt) ∝ p(zt|s)p(s|Zt−1), where the term p(zt|s) can
be computed in closed-form.

The distribution over the weights of the bank p(s|Zt)
is used to classify a track. The class s of a track is given
by arg maxs p(s|Zt). s is associated to a label through
the learning defined in Sec. 3.3.

4.2 Bayesian Update with Human
Observations

Under the same assumption of a static visual en-
vironment it can be shown that p(x|ot, . . . , o0) ∝∑N

s=1

∏t
i=0 l(oi|s)p(x|s)p(s).

The parallel structure mentioned in the previous sec-
tion also underlies this update. As a result, robotic and
human observations can be fused using the same filter
bank. For example, the fusion of t − 1 robotics obser-
vations and one human observation obtained at time t
lead to the following sequence of updates:

p(x|ot,Zt−1) ∝

p(ot|s = 1)l(zt−1|xt−1, s = 1) . . . p(x0|s = 1)p(s = 1) +

...

+p(ot|s = N)l(zt−1|xt−1, s = N) . . . p(x0|s = N)p(s = N)

This equation defines a multi-modal filter updating the
visual appearance of a landmark. It also shows that,
given the learnt model of the visual environment, fusion
of robotic and human observations can be achieved in
a very similar manner as fusion of conventional position
observations.

4.3 Measurement-to-track Association

The aim of estimating appearance states of a landmark
is to improve data association accuracy. We now present
a discrimination measure which measurement-to-track
association can be based on. It is derived from the
visual environment model and allows the ranking of
association hypotheses in the appearance state space.
This measure is referred to as the evidence of an ob-
servation zt, with respect to a track and computed as
p(zt|Hi), where Hi is the hypothesis “observation zt

was generated by track i” [Bailey and Durrant-Whyte,
2006]. Derivations specific to the model of the visual
environment lead to p(zt|Hi) =

∑
s p(zt|s,Hi)p(s|Hi),

where p(s|Hi) is given by the weights of track i, and
p(z|s,Hi) =

∫
p(z|x, s,Hi)p(x|s,Hi)dx which can be

computed in closed-form.

5 Implementation

The proposed filter was deployed in a mapping system
which updates, in real-time, position and appearance es-
timates of observed landmarks. This section first de-
scribes the filtering underlying the mapping process and
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Figure 3: (a) Unlike in Fig. 1, data association using position and appearance states ensures discrimination between
the two tracks. (b) Visual state space (x) displayed with the low dimensional part of the training set and the model’s
low dimensional components. The training set was made up of 12,388 points belonging to 27 different classes, one
class being unlabeled (3960 points). The model contains 27 components. Some correspondences between labels and
components are indicated. Note that the component “tree trunk” is hidden by data points. (c) The low dimensional
components of the model (in magenta) and five successive estimates of the tree’s and the car’s appearance states (in
blue). The regions corresponding to the two sets of estimates are magnified in the top insets. The successive means
of each object’s estimates are joined by segments.

then describes the implementation of the data associa-
tion mechanism.

5.1 Feature representation

A simple template matching algorithm is used to per-
form feature extraction from monocular colour images.
The extracted features z, are 3D RGB histogram with
93 bins resulting in a dimensionality of 729. Two proba-
bility density functions (PDFs) represent each extracted
feature: one over position states and one over appearance
states. The two state spaces are assumed statistically in-
dependent.

The high dimensional feature vector z is substituted in
the formulation of the likelihood function defined (Eq. 2)
and fused to prior appearance estimates using the tech-
niques described in previous sections. The dimension-
ality of the appearance state space is set to 3 since the
Isomap algorithm indicates that a reduction to 3 dimen-
sions retains sufficient information.

The image patch used to compute each feature pro-
vides a bearing only observation of a landmark position.
This information is represented as a Gaussian Mixture
Model (GMM) and used to calculate a location estimate
in Cartesian space. Details of position estimation can be
found in [Upcroft et al., 2005].

5.2 Data association

Data association requires validation gating to be per-
formed in the first instance. Formulating a gate that
is computable in real-time is still an open problem for
non-Gaussian filters [Bailey and Durrant-Whyte, 2006].

In this system gating prior to measurement-to-track as-
sociation is performed by ensuring that the evidence in
each state space is above a pre-defined threshold.

The data association module can then associate a new
observation to the track with maximum evidence. The
value of the evidence takes into account position and vi-
sual observations zp and zv and is defined as p(zp, zv|Hi).
Since the two state spaces are assumed statistically inde-
pendent p(zp, zv|Hi) = p(zp|Hi)p(zv|Hi). This implies
that the evidence can be computed as the product of the
evidence in the position space p(zp|Hi) and in the ap-
pearance space p(zv|Hi). The term p(zp|Hi) is obtained
by summing the weights of the unnormalised GMM re-
sulting from the position update of track i with obser-
vation zp [Bailey and Durrant-Whyte, 2006]. The term
p(zv|Hi) is computed as described in Sec. 4.3.

In [Upcroft et al., 2006], the probabilistic Bhat-
tacharyya distance is used for data association. This
distance evaluates the similarity between an incoming
likelihood and existing tracks. Its disadvantage is that
the distances scale differently in the position and appear-
ance space. As a result, distances computed in the two
spaces must be arbitrarily weighted so that they can be
combined in a decision rule for data association. The
use of evidences does not lead to this problem. The evi-
dences p(zp|Hi) and p(zv|Hi) are conditional probabili-
ties which naturally scale between zero and one and can
be readily compared without resorting to a pre-defined
scaling.



6 Experiments

6.1 Position and Visual Estimation
Combined

As explained in the introduction data association fails
based on position information only with all observations
fused into a single track (Fig. 1(c)). However, when the
appearance states of the tree and the car are simulta-
neously estimated, two different tracks are maintained
(Fig. 3(a)). The labels displayed in Fig. 3(a) corre-
spond to the maximum weight maxs p(s|Zt,Hi) of the
respective tracks. They show that the filter associated
to each track correctly estimates the landmarks’ class
and thus maintains two separate tracks each including
position and appearance states.

The visual environment model learnt for this exper-
iment is displayed in Figure 3(b). The training set as
projected by Isomap and the low dimensional compo-
nents defined by their mean νs and covariance matrix
Σs (Eq. 1) are displayed. The model was learnt as pro-
posed in Sec. 3.2. For the major part, the training set
was labeled. Unlabeled data was added to allow the
model to express indecision and stay consistent in the
eventuality of an observation belonging to none of the
labeled categories.

The model’s low dimensional components and five suc-
cessive estimates of the tree’s and the car’s appearance
are displayed in Fig. 3(c). Each estimate is represented
as a mean and a covariance (the first two moments of
the posterior). The two sets of estimates are close of the
components labeled “red car” and “tree trunk” respec-
tively. This shows that the filter associated to each track
correctly identifies the regions in the state space corre-
sponding to the landmarks’ appearance. The distance
that separates these two regions guarantees visual dis-
crimination and explains why two tracks are maintained
in Fig. 3(a).

This experiment illustrates the use of appearance
states as a way to enhance data association. We now
demonstrate in the context of a mapping application how
the filter tracks the drifts in landmarks’ appearance and
allows for accurate landmark classification over time and
in turn for robust data association.

6.2 Outdoor mapping

On the right of Fig. 5 is shown an example of map
estimated from observations performed by a human op-
erator, a ground and an air vehicle (displayed in Fig. 4).
The left image is a geo-referenced aerial photograph of
the testing area. It is given here as a ground truth ref-
erence. A few correspondences between estimated and
true landmarks are indicated by arrows.

This map was estimated during a 20 min long run.
The ground vehicle was travelling at an average speed of
15km/h, the air vehicle at an average speed of 100km/h.

The human operator was walking and used a laptop to
enter observations via an online graphical user interface
(GUI). The position of the different agents was moni-
tored with the GUI. Their localisation was given by GPS
and IMU sensors. Landmarks’ position and appearance
states were estimated using both monocular colour im-
ages provided by the vehicles and observations submitted
by the operator. Details on the communication proto-
cols between the different agents are given in [Upcroft et
al., 2006].

Updates of position and visual states were performed
at a frequency of 2Hz (2 images with multiple extracted
features per second). Feature extraction was the most
computationally intensive task requiring 60% of the pro-
cessing time. The filter was able to keep up with the
frequency of the features delivery. This shows that the
analytical formulation of the filter is appropriate for real-
time applications.

Each observation was embedded in the appearance
state space displayed in Fig. 3(b) through the likelihood
functions defined in Sec. 3.4. The low dimensional for-
mat of the likelihoods reduced the communication cost
since a set of 3 dimensional means and covariances had
to be communicated instead of 729 dimensional feature
vectors and associated uncertainty information.

Note that the model displayed in Fig. 3(b) was learnt
using imaging data acquired by both the air and the
ground vehicle. This results in a model of the visual
environment which is shared across the two platforms
and allows the filter to consistently fuse the likelihoods
sent by both vehicles.

In this shared representation space, human observa-
tions of landmark’s appearance were made by selecting
a label corresponding to one of the components of the
learnt model. Fig. 6 shows a subsection of the map
where both human and robotic observations have been
fused. An operator corrected a label which was wrongly
assigned by the ground vehicle. The operator entered a
“tree” observation close to the “white object” track as
shown in Fig. 6(a). The data association module asso-
ciated this new observation to the existing track which
resulted in the updated track displayed in Fig. 6(b).
The top of Fig. 6(b) shows how the probability of the
estimated class changed over time (marker colour and
size are proportional to the probability mass). The first
three observations were performed by the ground vehicle.
After the human observation was made, the probability
mass shifted towards the true class. Note that the land-
mark was miss-classified by the platform because this
landmark was a dead tree with a white looking trunk.
This illustrates how the filter through its ability to fuse
multimodal data, provides a facility for human robot co-
operation. For more details, see [Kaupp et al., 2006].

Another example of label correction is shown in Fig. 7.



Figure 4: Data is obtained from multiple sources including cameras mounted on an autonomous air vehicle and
ground vehicle. Observations are also submitted to the system by human operators. Each of the different sensor
modalities are incorporated into our filtering scheme. Close-ups of the sensor payloads including monocular colour
cameras are shown in the insets.

Figure 5: RHS: A example of estimated map. Landmarks are represented by position including uncertainty (coloured
ellipses) and their labels (most probable class). Platforms are shown as icons; UAV = air vehicle, GV = ground
vehicle, HO = human operator. LHS: An aerial image of the test facility with arrows indicating correspondences
between real landmarks and the probabilistic representation.
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Figure 6: Human operator refining a feature entered by a robot: (a) the GMM in green represents a landmark
previously observed by a passing ground vehicle (trajectory in red). Through the interface displayed on the right,
the operator contributes to the estimation of the feature by submitting a Gaussian position observation (black) and
the label “tree” as a class observation. (b) The filter update results in a corrected label.

Fig. 7(a) and Fig. 7(b) show the ground vehicle wrongly
identifying a tree as a “white object” (bottom of the
map) and recovering as more observations are obtained.

The examples presented in Fig. 6 and Fig. 7 illustrate
the role of filtering over appearance states as a recovery
mechanism from spurious measurements. The contri-
bution of this recovery mechanism to the classification
accuracy is quantified in the next section.

6.3 Quantitative Analysis

The effectiveness of filtering over appearance states can
be quantified by considering classification accuracy over
multiple time steps. Standard classification relies on in-
dependent computations at each time step, ignoring past
information. We show here that incorporation of past
information through the filtering process ultimately in-
creases classification accuracy.

Classification at each time step while ignoring the past
information was obtained by computing maxs p(z|s).
Classification with visual filtering was calculated using
maxs p(s|Zt,Hi) for the filter bank i at time step t. Re-
sults are presented in the form of Receiver Operating
Characteristic (ROC) curves shown in Fig. 8. Two
curves with and without filtering are shown (red and
blue curves respectively). The classes “tree” and “red
car” were analysed. The curves were generated using
data obtained from 13 individual runs of the ground ve-
hicle representing 2.8 hours of logging. 350 tracks were
observed multiple times with an average of 6 updates.

Better classification is indicated by a larger Area Un-
der the Curve (AUC). For the two classes analysed, the
AUCs of the blue curves are smaller than the AUCs of
the red curves. These results show that the inclusion of
filtering over appearance states improved classification.

Tracking drifts in landmarks’ appearance allows for ac-
curate landmark classification over time and in turn con-
tributes to robust data association. However it has one
limitation coming from the circular dependency which
exists between data association and landmark represen-
tation. This circular dependency can be formulated as
follows. Accurate data association requires a discrim-
inative landmark representation while a discriminative
representation requires data association to allow for the
fusion of relevant measurements. The proposed filter
generates a discriminative representation by updating
the appearance estimates. Data association is performed
using a mechanism that avoids any arbitrary scaling be-
tween the two state spaces. These two improvements
however leave us with the difficulty of defining gating
thresholds a priori (Sec. 5.2) which is a heuristic way
of dealing with the circular dependency between data
association and landmark representation.

7 Conclusion

A multimodal filter designed to track drifts in landmark
appearance has been presented. It has been shown that
the ability to update a landmark appearance estimate
contributes to a robust data association scheme. To the
best of the authors’ knowledge the combination of posi-
tion and appearance estimation in a recursive Bayesian
filter has not previously been implemented on a real-
time robotics system. Future work will focus on relaxing
the assumption of statistical independence between the
position and the appearance space.
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Figure 7: (a) Aerial image of the environment. The arrows highlight a few of the correspondences with the estimated
map of landmarks. (b) Based on repeated robotic observations, a recovery from misclassification of a tree initially
classified as a “white object” is shown.
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Figure 8: In red, ROC curves obtained from the distri-
bution given by the filter after one or more iterations
(classification rule: maxs p(s|Zt,Hi)). In blue, ROC
curves obtained from the distribution computed as the
normalised likelihood of the classes (classification rule:
maxs p(z|s)). The black line representing a random clas-
sifier is also plotted for comparison. (a) Result for “tree”
versus all other classes. (b) Result for “red car” versus
all other classes.
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