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Abstract 

The Simultaneous Localisation And Mapping 
(SLAM) problem is one of the major challenges 
in mobile robotics. Probabilistic techniques using 
high-end range finding devices are well 
established in the field, but recent work has 
investigated vision-only approaches. We present 
an alternative approach to the leading existing 
techniques, which extracts approximate 
rotational and translation velocity information 
from a vehicle-mounted consumer camera, 
without tracking landmarks. When coupled with 
an existing SLAM system, the vision module is 
able to map a 45 metre long indoor loop and a 
1.6 km long outdoor road loop, without any 
parameter or system adjustment between tests. 
The work serves as a promising pilot study into 
ground-based vision-only SLAM, with minimal 
geometric interpretation of the environment. 

1 Introduction 

 

One of the major problems facing autonomous mobile 

robots is the Simultaneous Localisation And Mapping 

(SLAM) problem. The core SLAM problem is the 

requirement that a robot, starting in an unknown 

environment, explore in order to learn the environment 

(map), while simultaneously using that map to keep track 

of the robot’s position (localise) within the environment. 

SLAM is, strictly speaking, a problem, although 

throughout the literature it is also used as a description of 

a process that a robot performs in solving the problem 

[Thrun, 2002].  

There has been extensive research into the SLAM 

problem over the past two decades. In recent years many 

different solutions to the SLAM problem have been 

demonstrated both in indoor and outdoor environments 

[Dissanayake et al., 2001, Kuipers et al., 2004, 

Montemerlo et al., 2002, Montemerlo et al., 2003, 

Newman et al., 2003, Thrun, 2000, Grisetti et al., 2005]. 

However, many of these mapping systems rely on 

accurate range-finding sensors, which are expensive and 

can be bulky, such as the well known SICK laser scanner. 

Some of the recent work in this field has investigated the 

possibility of discarding range sensors and using only 

vision sensors [Clemente et al., 2007, Davison et al., 

2007, Davison et al., 2005, Porta et al., 2005, Sim et al., 

2005, Cuperlier et al., 2005]. Vision sensors are attractive 

for many reasons, such as their low cost, passive sensing, 

and compactness. Furthermore, there is the ever present 

reality that humans and many animals appear to navigate 

effectively in large and complex environments using 

vision as their primary sensor. Some of the more 

promising results have involved stereo camera setups 

[Porta et al., 2005] or the use of sophisticated algorithms 

which recover the 3D trajectory of an unconstrained 

camera through the environment [Clemente et al., 2007, 

Davison et al., 2007, Davison et al., 2005]. 

In this paper we focus on the simpler problem of 

performing ground-based SLAM using a single consumer 

level camera, mounted on a vehicle constrained in its 

movement by its wheel arrangement (i.e. a car). The aim 

was to determine what mapping performance could be 

obtained from a relatively simple and non-environment 

specific (i.e. not looking for trees or doorways) image 

processing regime if coupled with an already competent 

SLAM algorithm [Milford, 2008, in press, Milford et al., 

2006]. More specifically, in this paper we present 

straightforward methods for extracting a vehicle’s angular 

velocity and an abstract representation of translational 

speed in order to perform path integration. In addition, we 

present a scene learning and recognition method. These 

vision processing techniques are integrated with the 

existing SLAM system and tested experimentally over a 

45 metre long loop of an indoor environment and a 1.6 

km long loop of an outdoor environment. 

The paper proceeds as follows. Section 2 presents the 

vision system, including the methods for extraction of 

angular velocity, speed and the template learning system. 

Section 3 briefly describes the SLAM system which was 

coupled with the vision system. Section 4 describes the 

test environments and experimental procedure. The 

performance of each visual processing method is 



presented in Section 5, along with the maps produced, 

before the paper concludes in Section 6. 

2 Vision System 

The camera used for this work was the built-in iSight 

camera on an Apple Macbook notebook computer (Figure 

1). The built-in iSight is similar to the more common 

external Apple iSight cameras, but uses a USB 2.0 rather 

than FireWire interface, is fixed-focus and uses an active 

pixel sensor rather than charge-coupled device (CCD). 

The camera’s resolution is 640 480 pixels and it is 

capable of 30 frames per second in 24 bit colour. The use 

of this particular camera was motivated by its status as a 

cheap consumer rather than high-end camera, and also 

because of its impressive autoexposure capabilities in 

outdoor environments with extreme variations in 

illumination. 

 

Figure 1 – Built-in iSight video camera on Apple 

Macbook. This camera was the sole source of sensory 

information for all experiments. The laptop was 

mounted on a chair for the indoor experiments and on 

a car for the outdoor experiments. 

 

Figure 2 – Image processing stages. The original 

colour image (a) is converted to grayscale (b), before 

being cropped and converted into a column intensity 

graph (c). 

Images were captured at 25 frames per second, but 2 

in every 3 frames were dropped, resulting in a frame rate 

of 8.3 frames per second. The colour images (Figure 2a) 

were first converted to greyscale images, before being 

cropped to a 300 160 pixel sub window (Figure 2b). Each 

pixel column was then summed and normalized to form a 

one-dimensional array (Figure 2c). Cropping the image 

removes much of the ground plane and increases the 

geometric relevance of summing pixel columns. These 

image arrays formed the basic abstract image 

representation from which vehicle rotation and speed was 

extracted. They were also used as the basis for the image 

template learning component. 

2.1 Extracting Rotation 

Rotation information is extracted by comparing 

consecutive image arrays. Figure 3a-b shows two 

consecutive images and their associated image arrays 

(Figure 3c). The comparison between images is 

performed by calculating the average absolute intensity 

difference between the two image arrays, f(s), as they are 

shifted relative to each other: 
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where I is the image array intensity values of the k
th

 and 

k
th

 + 1 images, s is the image array shift, and w is the 

image width. Figure 3d shows the average image array 

intensity differences for shifts of the first image array 

(dotted line). The best match for these two images is 

obtained for a shift of about 30 pixels to the left. The pixel 

shift is multiplied by an empirically determined gain 

constant  to convert it into an approximate angular shift 

:  

 ( )( )sfminarg=  (2) 

To ensure that there was sufficient overlap between 

images,  was only calculated for |s| < w – 10. 

The rotation calculation relies on a few assumptions, 

first and foremost that the camera is forward facing. The 

camera platform must also be constrained in its movement 

like a car or wheelchair style robot – the system cannot 

handle translation parallel to the camera lens plane. In 

addition, part of the reason for cropping the raw camera 

images is to reduce the effective field of view of the 

camera. A small field of view in a forward facing camera 

reduces the effect on image change of proximal walls in 

narrow corridors. In such situations, travelling along a 

corridor more closely to one wall than the other 

introduces the extra challenge of extremely different rates 

of change in the left and right side of the image, even 

though the camera is moving in a straight line. An 

alternative solution would be to use a bee-like optically 

driven centre-line following movement behaviour, or an 

iterative estimation process for translation and rotation 

speeds. 



2.2 Extracting Speed 

Extracting absolute speed from a single camera without 

any initialization, known landmark sizes or camera 

elevation information is an impossible task. The speed 

extraction system presented in this paper was loosely 

inspired instead by how bees use optical flow to perform 

path integration. Speeds are based on the rate of image 

change and represent movement speed through perceptual 

space rather than physical space. As can be seen later in 

the results section, when coupled with an appropriate 

mapping algorithm this simple approach can yield 

environment maps that are quite representative of the 

environment. 

The rate of image change v is obtained by calculating 

the average image array intensity differences for the best 

rotation match sm of the current and last image: 
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where 

 ( )sfsm minarg=  (4) 

By calculating the image difference using the best 

matched image arrays, the effect of rotation is mostly 

removed from the speed calculation. 

 

Figure 3 – Rotation information was calculated by 

comparing consecutive image arrays and calculating 

the pixel shift of the best match. (a) First image. (b) 

Second image. (c) Image arrays corresponding to (a) 

(dotted line) and (b) (solid line). (d) Graph showing 

adjusted image array differences for shifts in their 

relative positions. The best match occurs for an 

image 1 shift of about 30 pixels to the left.  

2.3 Template Learning 

Any path integration process, whether based on wheel 

encoder counts or optical flow, is subject to the 

accumulation of error over time. To overcome this 

limitation, a navigation system must be able to recognize 

familiar places using its sensory information. To achieve 

this capability, we use the image arrays as the basis for a 

visual template learning system. Images that are deemed 

sufficiently novel are added to the system’s repository of 

stored image array templates. 

Each new image is converted into an image array as 

described at the start of Section 2. This image array I is 

then compared with all the image array templates Ik stored 

in the repository, to yield a vector of array differences 

f(k): 
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If the minimum difference exceeds a threshold value, the 

new image is added to the repository. Otherwise, the best 

match existing image array is used as the current 

template. The s range can be varied depending on the 

desired rotational generalisation of the system.  

3 RatSLAM 

Although it is not the focus of this paper, for the purposes 

of self-containment this section briefly presents the 

SLAM system, known as RatSLAM, which was coupled 

with the vision system. A more detailed description can 

be found in [Milford et al., 2004] and [Milford et al., 

2006].  

Figure 4 shows the core structure of the RatSLAM 

system. The robot’s pose is represented by activity in a 

competitive attractor neural network called the pose cells.  

Wheel encoder information is used to perform path 

integration by appropriately shifting the current pose cell 

activity. Activity can wrap in all three directions in the 

pose cell matrix. Vision information is converted into a 

local view (LV) representation (the image array 

templates) that is associated with the currently active pose 

cells.  If familiar, the current visual scene also causes 

activity to be injected into the particular pose cells 

associated with the currently active local view cells.   

 

Figure 4 - The core RatSLAM pose cell and local view 

cell networks. 

The activity in the pose cells is converted into a usable 

map by an algorithm known as the experience mapping 

algorithm. The premise of the experience mapping 

algorithm is the creation and maintenance of a collection 

of experiences and inter-experience links. The algorithm 

creates experiences to represent certain states of activity 

in the pose cell and local view networks. The algorithm 



also learns behavioural, temporal, and spatial information 

in the form of inter-experience links. In effect, 

experiences represent distinct contextual memories of the 

environment. Figure 5 shows the relationship between the 

experience map and the core RatSLAM representations.  

 

Figure 5 - An experience is associated with certain 

pose and local view cells, but exists within the 

experience map’s own coordinate space. 

3.1 Experiences 

Experiences have an activity level that is dependent on 

how close the activity peaks in the pose cells and local 

view cells are to the cells associated with the experience. 

The component of activity determined by the pose cell 

network activity, 
''' yxE , is given by: 
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where pcx' , pcy' , and pc'  are the coordinates in the 

pose cell matrix of the dominant activity packet, 
i

x' , iy' , 

and 
i
'  are the coordinates of the pose cells associated 

with experience i, ra is the zone constant for the )','( yx  

plane, and a is the zone constant for the '  dimension. 
The visual scene Vi switches an experience on or off: 
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where Vcurr is the current visual scene, and Vi is the visual 
scene associated with experience i. The most active 
experience is known as the peak experience. Learning of 
new experiences is triggered by the peak experience’s 
activity level dropping below a threshold value. 

3.2 Experience Transitions 

 

Figure 6 - Links between experiences store several 

types of information, including odometric information 

about the robot’s movement during the transition. 

Inter-experience links store temporal, behavioural, and 

odometric information about the robot's movement 

between experiences. Figure 6 shows a transition from 

experience i to experience j. The physical movement of 

the robot during this transition is given by: 
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where dpij is a vector describing the position and 
orientation of experience j relative to experience i. 
Repeated transitions between experiences result in an 
averaging of the odometric information [Milford, 2008, in 
press]: 
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3.3 Map Correction 

Discrepancies between a transition’s odometric 
information and the linked experiences’ ),,( yx  

coordinates are minimised through a process of map 
correction: 
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where  is a learning rate constant, Nf is the number of 
links from experience i to other experiences, and Nt is the 
number of links from other experiences to experience i. 
The experience map is subject to the same constraints of 



any network style learning system – appropriate learning 
rates must be used to balance rapid convergence with 
instability.  

4 Experimental Setup 

Experiments were performed in the two environments 

shown in Figure 7. The indoor environment was part of 

the floor of an office style building. A Macbook notebook 

was positioned on a roller office chair, facing ‘forwards’ 

with neutral pitch, and pushed around two loops of the 

environment along the trajectory shown in Figure 7a. The 

chair was moved as if it were a wheelchair style robot – it 

could move forwards, rotate on the spot, but could not 

move sideways parallel to the camera lens. The controller 

attempted to move the chair at a constant speed, but had 

to slow down to make turns such as at point B. The length 

of a single loop was approximately 45 m. The two loops 

took 140 seconds to traverse. 

The outdoor environment consisted of part of the 

University of Queensland campus. A Macbook was 

mounted on the front bonnet of a car facing forwards and 

with neutral pitch. The car was driven at approximately 

constant speed around two loops of the environment. The 

weather was generally sunny although the sun was briefly 

obscured at times during the experiment by clouds. The 

length of a single loop was approximately 1.6 km. The 

two loops took approximately 460 seconds to traverse. 

The image data from both experiments was saved to disk, 

and replayed at real-time speed to the vision system, 

combined with the RatSLAM system. The size of the pose 

cell matrix was 60 60 36 cells. Most importantly, no 

parameters were changed between the two environments.  

 

Figure 7 – (a) Indoor and (b) outdoor test 

environments with robot trajectories shown. The large 

arrow shows the starting location and direction, with 

smaller arrows showing the direction of travel. 

© Google Maps®. 

5 Results 

This section presents the performance of the template 

matching process, the angular velocity and speed 

extraction methods, and the overall system’s mapping 

performance in the two test environments. 

5.1 Angular Velocity Extraction 

Figure 8 shows the rotational speeds in each environment 

as calculated by the image array matching algorithm. The 

movement around the table cluster A in Figure 7a can be 

clearly seen in the two highlighted regions labelled A in 

Figure 8a. The sharp turn at the end of the corridor at B in 

Figure 7a can be seen at the point labelled B in Figure 8b. 

There are a couple of probably erroneous angular velocity 

values, one at 70 seconds and one at 103 seconds. 

In the outdoor environment, the sharp turns at points 

D, E, and F in Figure 7b are clearly represented in the 

angular velocity graph in Figure 8b. Of perhaps more 

importance is the more subtle angular velocity detection 

corresponding to the road section between points D and E. 

The angular velocity is initially positive just after D, 

gradually becomes negative as the car rounds the bend 

halfway between D and E, then becomes positive again in 

the final road section leading up to E. These estimated 

velocities, at least qualitatively, reflect the actual angular 

velocities that would be expected driving along this 

stretch of road. The spike around 80 seconds is due to the 

vision system not correctly handling a short computer lag, 

which resulted in no images being recorded for several 

seconds.  

 

Figure 8 – Unfiltered rotational speed calculated from 

consecutive image array matching, for (a) the indoor 

experiment and (b) the outdoor experiment.  



5.2 Speed Extraction 

The ‘speed’ of the camera through the environment as 

calculated by the vision system is shown in Figure 11. No 

units are shown along the vertical axes, although in strict 

terms the speed is measured in terms of the average 

difference between image array intensity values for 

consecutive images. For both environments, the signal is 

quite noisy. There is much potential for improvements to 

the speed detection system, such as employing some form 

of temporal filter that considers more than just the current 

and immediate last image (which represent a time period 

of only 0.12 seconds. Other possible solutions are 

discussed in Section 6. However, even with this noisy 

signal it is possible to form coherent maps, as is shown in 

Section 5.4. 

 

Figure 9 – Unfiltered robot ‘speed’ calculated from 

image change gradients, for (a) the indoor experiment 

and (b) and the outdoor experiment.  

5.3 Template Learning and Recall 

Figure 11 shows the performance of the template learning 

and recall system in the two environments. In the indoor 

environment, the system learned 159 templates during the 

first loop and an additional 28 templates during the 

second loop. In the outdoor environment the system 

learned 324 templates during the first loop and an 

additional 112 templates during the second loop. The 

inferior recognition performance in the outdoor 

environment during the second loop was probably due to 

the more challenging perceptual conditions. Even during 

the short experiment, illumination conditions varied 

significantly and traffic was encountered throughout 

much of the circuit (Figure 10).  

 

Figure 10 – Some example capture images from the 

outdoor environment. The traffic encountered around 

the loop caused some problems for the template 

learning / recognition system.   

 

Figure 11 – Visual template learning and recognition 

in the (a) indoor and (b) outdoor environments. 

5.4 Mapping 

The experience maps created by the RatSLAM system 

and experience mapping algorithm are shown in Figure 

12. For reference, the ground truth trajectories of the robot 

through the environments are also shown. For the indoor 

environment, ground truth was obtained by tracing out the 

observed path of the camera on an accurate floorplan. For 

the outdoor environment, the ground truth trajectory was 

obtained by tracing the path of the road through the aerial 

photo shown in Figure 7b. The red crosses show the 



actual camera locations and locations as estimated by the 

navigation system at various times through the 

experiment. Because there was no absolute scale for the 

experience maps, they are manually scaled to facilitate 

comparison with the ground truth trajectories. 

The experience maps closely resemble the actual path 

of the camera through the environment, although they are 

not identical. In the indoor environment, because only a 

forward facing camera was used, there was no 

information to explicitly bind together the forward and 

reverse paths through the corridor. Instead, the experience 

mapping algorithm positioned the paths based on the 

odometric information obtained from the sequence of 

images, resulting in a slight alignment error. This problem 

could be solved by adding a backwards facing camera, or 

a panoramic camera, as in the original outdoor RatSLAM 

experiments [Prasser et al., 2005]. In the outdoor 

environment, the map also closely resembles the actual 

camera trajectory, although it is slightly warped in places.  

 

Figure 12 – Ground truth trajectories and 

corresponding experience maps, for the (a-b) indoor 

environment and (c-d) outdoor environment. Crosses 

show the (a,  c) actual and (b, d) estimated locations at 

five times during the experiments.  

6 Conclusion 

Although preliminary in nature, the results presented in 

this paper have demonstrated the potential for mapping 

ground-based environments with only a single, consumer 

camera, without geometric interpretation of the 

environment. It appears that, as expected, quite good 

rotational information can be extracted from visual 

sequences with a forward facing, zero pitch camera. In the 

short term it also seems possible to learn and recognize 

visual scenes in an outdoor environment, although 

dynamic objects such as cars can disrupt performance. 

Extracting translation speed was more challenging, and 

only an abstract representation of speed was obtained. 

However, the mapping system was still able to generate 

coherent and representative maps. 

As this was an initial investigative study, there are 

many areas where future work may be productive. By 

extending the vision system to use multiple cameras or a 

panoramic camera, it will be possible to explicitly link 

trajectories in opposing directions such as along a corridor 

or road, solving slight alignment problems such as in 

Figure 12b. The crude summation of vertical pixel 

columns could be replaced by a processing step that takes 

into account the camera mounting geometry and optical 

characteristics. A better measure of translational velocity 

may be obtained by employing some form of ground 

texture or feature tracking. Having a measure of physical 

speed will probably yield maps that more closely 

resemble the physical layout of the environment. 

However, it may turn out that using a perceptual speed 

measure yields maps that are more useful for a robot 

performing autonomous navigation. In previous work 

using the RatSLAM system, navigation performance did 

not seem to be affected by warping of the map [Milford et 

al., 2006]. It is interesting to note that animals such as 

bees may not have a means of measuring absolute speed 

[Srinivasan et al., 2000]. 

Most of the areas highlighted for possible future work 

are brought about by attempting to predict the problems 

that will be encountered during longer experiments, in 

larger, more challenging environments. One of the most 

profitable areas of future work will be to test and develop 

the vision system in such conditions. These experiments 

will quickly determine the scalability of the approach to 

visual SLAM presented in this paper. 
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