
Generic interfaces for robotic limbs

Geoffrey Biggs and Bruce MacDonald
Department of Electrical & Computer Engineering, University of Auckland

Email: g.biggs at ec.auckland.ac.nz, b.macdonald at auckland.ac.nz

Abstract

Generic interfaces to robot hardware can im-
prove the programming process by making it
easier for developers to port applications be-
tween different robotic systems. The Player
project provides abstract interfaces to aide
porting, but until recently did not have any di-
rect support for robotic limbs. This paper de-
scribes the design and implementation of three
new generic interfaces for robotic limbs and
grippers: a low-level interface for controlling
limb joints, a high-level interface for control-
ling end-effector pose, and an interface for con-
trolling grippers. The design of the interfaces
allows robot applications to quickly be ported
between different robotic limbs and different
robots. The interfaces are implemented in the
Player project, with support provided in the
driver for Pioneer robots, allowing the inter-
faces to be used to control the Pioneer robot
arm and gripper. Other drivers are expected
to be developed in the future, providing sup-
port for other robotic limbs.

1 Introduction

Like mobile robots, robotic limbs are finding increasing
use in service applications. Limbs are used to manip-
ulate the world around the robot, in the form of arms
with manipulating end effectors such as grippers, and to
move the robot around the world, in the form of legs.
Without limbs, robots would be considerably less capa-
ble of interacting with the world around them. How-
ever, as with all types of robot hardware, the need to
use limbs brings with it the need to create software to
control them. This paper describes generic interfaces
developed for the Player project for controlling robotic
limbs.

Previously Player did not provide direct support for
any form of robotic limb and only had limited support

for robotic grippers. Three new interfaces were created
for these types of hardware: an actuator array interface
to provide low-level control of the joints of robotic limbs,
a limb interface to provide end effector position control,
and a gripper interface to provide control of robotic grip-
pers. These are described in Sections 3, 4 and 5. A com-
parison with other software interfaces to robotic limbs is
given in Section 6.

The requirements for the interface designs were de-
veloped with help from the Player user and developer
communities using Player’s development mailing list1.
Feedback from other Player users on the needs of the
interfaces and needs of users led to improvements in the
designs and the final, implemented interfaces.

2 The Player Project

Player is a distributed architecture for robot software
based on the producer/consumer concept [Vaughan et
al., 2003]. It provides network transparency and hard-
ware abstraction, with the goal of allowing software writ-
ten for one robot to work on a robot with similar capa-
bilities, even if the hardware or software implementation
of that robot is very different. In its simplest form, it
can be used for simple client/server programs.

The Player server provides access to robot hardware
and the interface to client software. Robot hardware
is controlled through a set of message interfaces that
represent common robot functionality, such as a laser
scanner, a position controller or a path planner. These
interfaces provide the network communications protocol
for the Player server. Drivers for specific hardware or
for specific implementations of software algorithms are
used to interface between robot hardware and software
algorithms and the Player server [Collett et al., 2005].

Client programs use the Player client libraries to ac-
cess robots controlled by a Player server. There are client
libraries for C, C++ and Java, and bindings for Python

1See http://sourceforge.net/mailarchive/
message.php?msg_id=12241168



are automatically generated based on the C client li-
brary. The producer/consumer structure means that
multiple clients written in different languages can con-
nect to a single Player server at the same time. The client
libraries hide the network interface from client software
to provide a more useful robotics API. Messages are sent
from client programs to drivers on the server to control
robots, and messages are sent from drivers to client pro-
grams to provide data, for example sensor readings or
state information.

Player uses interfaces to define how to interact with
different types of hardware and software components.
Each interface defines all the messages that a driver con-
trolling a piece of hardware or software that supports its
capabilities will understand and provide. There are three
important message types:

Data messages are broadcast from drivers to clients
to provide new information on, for example, the
driver’s state.

Command messages are sent from clients to a driver,
instructing it to perform an action.

Request messages are sent from clients to a driver,
usually to request a change in the driver’s config-
uration or request some information. Unlike data
and command messages, request messages expect to
receive a response, which may indicate the success
or failure of the request or contain the information
requested.

In all cases, the client may be another driver or a client
program written using one of the client libraries.

3 Actuator array interface

Robotic limbs can be viewed as an array of linear or ro-
tary actuators, where linear actuators change the length
of the link to the next actuator (for example, a hydraulic
piston) and rotary actuators rotate about a joint axis.
For example, a simple robot arm with one degree of free-
dom shoulder, elbow and wrist joints can be seen as an
array of three rotary actuators.

The actuator array interface provides this low-level,
direct control over the joints of robotic limbs. It was
necessary to separate this functionality from the func-
tionality of limb interface described in Section 4 because
not all limbs will provide both interfaces, and because
combining them would lead to an overly complex inter-
face.

The actuator array supports both linear and rotary
actuators. It allows the position of each actuator in the
array to be set, or alternatively allows each actuator to
be commanded to move at a given speed, in order to
provide sufficient flexibility of control. It also enables
moving actuators to a known “home” position, usually

Table 1: The messages of the actuator array interface.
Type Name Parameters

Data State (position, speed, state) for each
actuator, number of actuators

Command Position Actuator number, position
Speed Actuator number, speed
Home Actuator number (-1 for all ac-

tuators)

Request Geometry Base pose, (type, offset from
previous actuator, orientation,
axis, minimum, centre, max-
imum, home position, config-
ured speed, hasBrakes) for each
actuator, number of actuators

Power Boolean – off or on
Brakes Boolean – off or on
Speed Actuator number, speed

where it is safe to switch off the actuators. Clients must
get data back describing the current position, speed and
state of each actuator in the array. Finally, the correctly
designed interface must provide enough information, in-
cluding the geometry of the actuators in the array, for
clients to implement their own inverse kinematics and
make other calculations about the real robot arm.

The messages of the designed interface are shown in
Table 1. Actuator states may be idle, moving, braked or
stalled (blocked from moving to the requested position).
Units for position values are either metres or radians,
depending on whether the actuator is linear or rotary.
Speeds are measured in units per second. All values
are in each joint’s coordinate space. It is important to
note that this interface attempts to provide all the in-
formation necessary for clients to make local kinematics
calculations.

A reference implementation of a driver supporting the
actuator array interface was embedded in the multi-
interface Player driver for Pioneer robots [MobileRobots,
2006]. It provides joint-level control over the Pioneer’s
5DOF robotic arm. This arm, shown in Figure 1, has
five degrees of freedom for controlling the end effector
position and a gripper on the end of the arm.

The arm is controlled via the Pioneer’s onboard con-
troller, which receives commands over its serial or TCP
link with the Player server in the form of a single byte
value between 0 and 255, indicating the position of the
servo that is being commanded. The actuator array
driver converts these byte values into radians assuming
the origin is at each servo’s centre point, and using cal-
ibration data received from the onboard controller. It
converts command values back from radians to the byte
values before they are transmitted to the onboard con-
troller.

The actuator array interface provides a device-



Figure 1: The 5DOF robotic arm for Pioneer 3-DX
robots.

independant method of controlling the individual joints
of robotic limbs at a low level. Software written using
the interface can be moved between different hardware
with ease, assuming the hardware provides the same con-
figuration of joints. If the joint configuration changes,
it is simpler to move code to the new hardware as a
new method of controlling the joints does not need to be
learned. The interface does not abstract away the need
to alter software to handle changes in the joint config-
uration. The interface also has potential applications
beyond the standard robotic limb. A snake robot, for
example, is often constructed as an array of actuators.

4 Limb interface

Section 3 described the actuator array interface, used for
individual joint control of a robotic limb. This section
describes the high level interface used to control a limb
with a built-in kinematics controller (in the driver or
in the limb itself) or some other form of built-in direct
control over the end position of the limb.

A robotic limb could be an arm with a gripper on the
end, or it could be the leg of a humanoid robot. The
limb interface is therefore designed to control the posi-
tion and orientation of the end point of a robotic limb,
whether this is an end effector or simply the end of the
limb. It assumes the driver providing the interface will
manage individual joint angles suitable to the hardware
the driver is controlling.

To support a range of limb types, the interface must
set both the position of the end of the limb without care
for the orientation and for setting the position and the
approach and orientation vectors of the end of the limb.

Table 2: The messages of the limb interface.
Type Name Parameters

Data State End effector position, ap-
proach vector, orientation
vector, limb state

Command SetPose End effector position, ap-
proach vector, orientation
vector

SetPosition End effector position
VectorMove Direction vector, length of

move
Home –
Stop –

Request Geometry Position of limb’s base
Power Boolean – off or on
Brakes Boolean – off or on
Speed Speed

The vectors are necessary for limbs with an end effector
such as a gripper in order to approach an object to be
grasped from the correct direction and at the correct ori-
entation. To further support limbs in this style of task,
the interface also must provide a “vector move,” where
the end effector is moved along a straight line without
change in its orientation. This is used to move into the
grasping position for picking up objects, for example.
Finally, the interface must be able to send the limb to a
safe “home” position and to stop the limb at its current
position as a safety measure, for example, to stop the
limb when obstructed.

The messages of the designed interface are shown in
Table 2. The limb’s state may be idle (awaiting com-
mands), braked, moving, out-of-reach (indicates that the
limb cannot move the end effector to the commanded
pose or position due to constraints in its degrees of free-
dom), or in collision (indicates that the limb cannot move
to the commanded pose or position because of an ob-
struction). The interface itself does not specify which
coordinate space should be used for end effector geome-
try.

A driver has been implemented for the Pioneer arm,
including forward and inverse kinematics via the limb
interface, as part of the multi-interface Pioneer driver.
The driver uses the kinematics calculations described by
Gan et al. [2005]. Since this calculator requires full pose
information, in the form of position plus vectors, the
driver does not support the SetPosition command of the
interface. It also does not currently support the Vector-
Move command. The driver uses the robot’s coordinate
space for all position information, so the end effector
pose is set relative to the robot’s origin.

The driver interfaces directly with the Pioneer’s on-
board controller, rather than going through the existing
actuator array interface. This is done in the same way



Table 3: The messages of the original, Pioneer-specific
gripper interface.
Type Name Parameters

Data State Gripper state (bit-mask),
breakbeams state (bit-mask)

Command Command Command byte, argument byte

Request Geometry 2D pose, 2D size

as the actuator array communicates with the onboard
controller. See Section 3 for details.

The limb interface provides portability even beyond
that of the actuator array interface. Because all that is
important is the pose of the end of the limb, software can
be moved between different hardware with ease, even if
the configuration of the hardware changes. For example,
two different robotic arms with sigificantly different joint
configurations but with a similar reachable space could
use identical code in client software, relying on the indi-
vidual drivers to manage device-specific changes such as
differences in kinematics calculations. In some applica-
tions, such as the arms of a service robot, changes in the
reachable space of the arm in use may not be important
because of the portability of the arm’s base.

5 Gripper interface

The original Player gripper interface, shown in Table 3,
was effectively just a pass-through interface to the grip-
per commonly used on Pioneer robots. It was capable
of passing the byte commands used by this gripper’s
controller directly from a client program through to the
robot. As such, it was not standard and could not be
used to control any other robot grippers.

To rectify this, a new, standard gripper interface has
been designed. All the functionality of the existing in-
terface is available, as well as some new functionality.
The gripper must be capable of opening, closing, and of
providing information on where in the gripper an object
is positioned, to allow clients to know when to close the
gripper, a function provided by the breakbeams value in
the original interface.

The Pioneer gripper includes a lift system, used to
raise and lower the gripper in order to lift objects off the
ground for carrying. However, because this functional-
ity can be provided more suitably by the actuator array
interface, it was left out of the new gripper interface.

One interesting consideration when designing the new
interface was accommodating the wishes of artificial in-
telligence researchers who use the Player project’s Stage
simulator. The Pioneer gripper features a command
to “store” the gripper, in other words to move it to a
suitable position for driving the robot around. AI re-
searchers had been using this command to cause the

Table 4: The messages of the new, standardised gripper
interface.
Type Name Parameters

Data State Gripper state, breakbeams
state, number of stored objects

Command Open –
Close –
Stop –
Store –
Retrieve –

Request Geometry 3D Pose, outside dimensions
(3D), inside dimensions (3D),
number of breakbeams, storage
capacity

gripper to “swallow” whatever it was carrying, a use-
ful function in AI simulations. In order to replicate this
ability, and in consideration for the possibility of real
gripper devices that could perform a similar function,
the ability was added for storing and retrieving carried
objects in some kind of repository in the gripper device.

It was decided to keep the use of breakbeams to indi-
cate the position of objects in the gripper, as this is the
standard method.

The messages of the designed interface are shown in
Table 4. The gripper state may be open, closed, mov-
ing, or error to indicate some problem has occurred with
executing the last command.

The new gripper interface was also added to the multi-
interface Pioneer driver. A new Pioneer gripper interface
was added, replacing the the one offered by the original
gripper interface, and a second interface was added for
the gripper on the end of the Pioneer robotic arm. Both
grippers have a storage capacity of zero, and so do not
support the Store and Retrieve commands.

The lift functionality of the original gripper interface
was replaced with another actuator array interface. This
particular instance of the interface is limited to just one
linear actuator, and can only move between positions
0cm and 7cm. In this way, the functionality of the orig-
inal gripper interface is preserved.

The lift hardware does not provide the current posi-
tion of the lift, although it does allow the time taken for
raising or lowering to be changed. This does not guaran-
tee position accuracy as the distance moved in this time
will change depending on the load being carried by the
gripper. Position values of 0cm correspond to “down”
and values of 7cm correspond to “up.” Values between
0cm and 7cm are used to calculate an estimated travel
time to reach that position, giving an approximate form
of position control.

The gripper interface does not include information
about the configuration of the gripper’s fingers. This



is both a disadvantage and a benefit. It means that
individual control of a gripper’s fingers is not possible
through the interface even if the gripper itself provides
such control. However, it also means the interface is
simpler. Knowing the available space inside the gripper
allows for guaging if it can fit an object. This use of high
level control over the whole gripper, rather than individ-
ual control of fingers, also allows for portability across
many different grippers.

6 Other limb interfaces

Other robot programming systems provide their own in-
terfaces for robotic limbs.

Industrial programming systems, such as those from
ABB [2006] and KUKA [2006], are designed specifi-
cally for controlling the robot manipulators for indus-
trial robots, and include a simple control language. The
KUKA environment provides:

• instructions to use advanced motion control to move
the end effector along a continuous geometrically
defined path containing lines and arcs

• instructions to quickly move the end effector from
its current point to another point, without defining
the path the end effector takes and instead moving
each joint to its destination position directly

• control over individual axis velocities and accelera-
tions

• use of Programming by Demonstration to specify
positions to move to

• support for involved coordinate spaces, including
tool space, robot space and world space.

The highlight of such systems is their advanced motion
control ability, which allows for moving the end effector
along complex paths with a high level of accuracy. The
interfaces created for Player do not provide the same
level of functionality in this area. The only complex
movement is provided by the limb interface’s Vector-
Move command. However, Player is designed for re-
search and service robotics applications, rather than in-
dustrial robotics, and so such functionality may not be
as necessary. If it is found to be needed in the future, ex-
panding the interfaces to add suitable commands would
be a simple task. The industrial systems also feature
a mix of both low- and high-level functionality, such as
the direct control over individual joint positions and the
advanced motion control. Player provides a similar mix,
but separates it into the two separate interfaces, the ac-
tuator array interface and the limb interface.

The ARIA Application Programming Interface for
robots from MobileRobots [ARIA, 2006], including the
Pioneer 3DX, provides a class for controlling the Pioneer
robotic limb. This class uses a set of functions and types

for low-level joint control over the arm. Forward and in-
verse kinematic calculators are provided separately, for
calculating joint and end effector positions. Player takes
a different approach in that the kinematic calculators are
hidden from clients behind the interface, allowing pro-
grammers to ignore the fact that a calculator is being
used and concentrate instead on setting poses to move
to, simplifying the use of kinematics. It also provides
more flexibility in supporting a wide range of hardware,
as some limbs may feature kinematics calculators built
into their hardware controllers, others may need them in
their Player drivers, and still others may rely on client-
side calculators that control the limb via the actuator
array interface.

ARCL [Corke and Kirkham, 1993] provides libraries
and an API for the C language, that includes manipula-
tors. It provides many commonly used data types, such
as transformations. It uses a real-time trajectory genera-
tor in the background to control the robot in response to
instructions from the program. Kinematic solutions are
provided by plug-in libraries. The interface presented
to the programmer is quite different from Player’s, fo-
cussing on providing greater support for the data in-
volved. Player’s programmer interface in the client li-
braries, by contrast, closely mimics the messages of the
network interface.

There are many similar projects to Player in develop-
ment. Not all of them provide interfaces for supporting
robotic limbs. The ORCA and CARMEN projects, for
example, do not provide any specialised interfaces for
controlling robotic limbs. In both cases, it would be
possible to provide joint level or end-effector level con-
trol using existing interfaces for controlling position, but
this lacks a strong semantic link to what is being con-
trolled. It also lacks some of the functionality of Player’s
interfaces, such as the ability to command a vector move
on the limb interface, or the simple open and close com-
mands of the gripper interface.

7 Sample code

Listing 1 shows a small program written using the
Python client library and RADAR [Biggs and MacDon-
ald, 2006] to move the Pioneer arm to random positions
every few seconds. The actuator array interface is used
to provide low-level control of the arm by setting each
joint’s position individually. Note the selection of ran-
dom joint values based on the information provided by
the interface about the range of each joint (lines 5 to 14).

Listing 1: A program to move the Pioneer arm to random
positions, using the actuator array interface for individ-
ual joint control.

1 geom = aa.get_geom ()
while 1:



3 robot.read ()
for i in range (aa.actuators_count):

5 min = geom[i][1]
6 max = geom[i][3]
7

if min > max:
9 moveRange = min - max

else :
11 moveRange = max - min

13 randomNum = random.random ()
newPos = moveRange * randomNum

15 if min < 0˜rad:
newPos += min

17 else :
newPos += max

19 if i == 1 and newPos < -0.2˜rad:
newPos = -0.2˜rad

21

print ’Moving joint ’ + str (i) + ’
to ’ + str (newPos)

23 aa.position_cmd (i, newPos)

25 sleepTime = random.randrange (5) + 1
time.sleep (sleepTime)

Listing 2 shows a program to pick up a block, move it
to another position, and put it down. It uses the C++
client library, and demonstrates the use of the limb and
gripper interfaces. Points of interest include:

10, 78 Moving the limb to a known safe position, its
home position, at the start and end of the program.

42 Moving the end effector to a pose offset from the ob-
ject, and aligning the end effector along a calculated
approach vector, using the SetPose command.

46, 46 Checking if the limb was capable of reaching
the requested pose by checking its state. If the
requested pose was outside of the limb’s reachable
area, the limb would be in the out-of-reach state
until a new command is issued.

66, 74 Using the simple gripper commands to grip and
release the object.

Listing 2: A program to pick up and move a block. The
limb and gripper interfaces are used to control a Pioneer
arm.

1 double HandleHeight = 0.17; // Height above
floor that the arm should grab at

2 double BlockRadius = 0.001; // Radius of
circle about top of block thing

4 PlayerClient Robot(RobotHostname, RobotPort);
Robot.StartThread();

6 LaserProxy Laser(&Robot, 0);
LimbProxy Limb(&Robot, 0);

8 GripperProxy Gripper(&Robot,0);

10 Limb.MoveHome();
11 Limb.RequestGeometry();

12 Laser.RequestConfigure();
Laser.RequestGeom();

14 player_pose_t LaserPose = Laser.GetPose();

16 // Find the closest point in the laser scan
int MinIndex = 0;

18 for (uint ii=1; ii < Laser.GetCount(); ++ii)
{

20 if (Laser[ii] < Laser[MinIndex])
MinIndex = ii;

22 }
player_point_2d_t Closest =

Laser.GetPoint(MinIndex);
24 Closest.px += LaserPose.px;

Closest.py += LaserPose.py;
26

// Calculate a point in the middle of the
block

28 double PreRange = Laser[MinIndex]
+BlockRadius;

double Bearing = Laser.GetMinAngle() +
Laser.GetScanRes() * MinIndex;

30 player_point_2d_t CentrePoint;
CentrePoint.px = PreRange * cos(Bearing);

32 CentrePoint.py = PreRange * sin(Bearing);
CentrePoint.px += LaserPose.px;

34 CentrePoint.py += LaserPose.py;

36 // Calculate the approach vector
player_point_2d_t Orientation;

38 Orientation.px = CentrePoint.px - Closest.px;
Orientation.py = CentrePoint.py - Closest.py;

40

// Calculate a point about 5 cm above the
target point.

42 Limb.SetPose(CentrePoint.px, CentrePoint.py,
HandleHeight + 0.05, 0,0,-1,
Orientation.px, Orientation.py, 0);

43 // Wait for it to get there (this could
actually poll the arm to check)

44 sleep (10);

46 if (Limb.GetData().state ==
PLAYER_LIMB_STATE_OOR)

47 {
48 cout << "Target out of reach,

terminating" << endl;
Limb.MoveHome();

50 return 0;
}

52

// Move to grasp position
54 Limb.SetPose(CentrePoint.px, CentrePoint.py,

HandleHeight, 0,0,-1,Orientation.px,
Orientation.py, 0);

55 // Wait for it to get there
56 sleep (3);

58 if (Limb.GetData().state ==
PLAYER_LIMB_STATE_OOR)

59 {
60 cout << "Target out of reach,

terminating" << endl;
Limb.MoveHome();

62 return 0;



}
64

// Close the gripper to grasp
66 Gripper.Close();
67 sleep(3);
68

// Move arm to position over back
70 Limb.SetPose(0.119, -0.183, 0.234, -0.031,

0.408, -0.912, 0, -0.91, -0.409);
sleep(5);

72

// Open the gripper to release the block
74 Gripper.Open();
75 sleep(3);
76

// Move to home position
78 Limb.MoveHome();

8 Conclusions

Generalised interfaces to robot hardware and software
components can improve robot programming. They
make it easier for developers to move between hardware
and reuse existing code. The Player project provides fa-
cilities for generalised access to robots. New interfaces
were added to Player to support hardware that was pre-
viously unsupported, specifically, robotic limbs and grip-
pers. An interface to provide a method for low-level con-
trol of the individual joints of robotic limbs was created,
as well as a separate interface providing a high level con-
trol of limbs via control over the position of the end of a
limb. The gripper interface was completely reworked to
change it from being specific to a single gripper device to
instead being a general gripper interface that can work
with any robot gripper.

The interfaces are part of the standard Player distri-
bution.2 They have been successfully used in a final year
robotics paper programming assignment and in several
postgraduate and final year projects at The University
of Auckland. Higher level applications can use the in-
terfaces, particularly the limb and gripper interfaces, to
interact with robotic limbs without care for the specific
hardware in use, in keeping with Player’s concept of pro-
viding device abstraction. A humanoid robot could use
the limb interface to specify feet positions, relying on
the driver for the underlying hardware to manage spe-
cific joint angles. A service robot could use the same
interface, and the gripper interface, to control its arms,
irrespective of the arm hardware it is equiped with.

The interfaces provide suitable functionality for the
limbs of service robots. They do not provide the ad-
vanced motion controls found in industrial manipulator
controllers. They allow for low-level control of individual
limb joints, higher-level control over the position of the
end effector and movement of the effector in such a way

2The source code is available at playerstage.sf.net

as to move from a pre-grasp position to a grasp position.
In this way, they provide a suitable level of control for
the limbs of service robots in a general interface that
increases portability of robot software.

Acknowledgements

The designs were created based on initial concepts, then
modified under the advice of the Player user and devel-
oper communities. The final designs were agreed upon
by the community as being suitable to the needs of
Player users. The limb/gripper sample code in Listing 2
was provided by Toby Collett.

References

[ABB, 2006] The ABB group. http://www.abb.com/,
2006.

[ARIA, 2006] Advanced Robotics Interface for Ap-
plications. http://www.activrobots.com/
SOFTWARE/aria.html , 2006.

[Biggs and MacDonald, 2006] G.M. Biggs and B.A.
MacDonald. Evaluation of dimensional analysis in
robotics. In Proc. IEEE Conference on Automation
Science and Engineering, Shanghai, China, October
2006.

[Collett et al., 2005] Toby Collett, Bruce MacDonald,
and Brian Gerkey. Player 2.0: Toward a practical
robot programming framework. In Proceedings of the
Australasian Conference on Robotics and Automation,
University of New South Wales, Sydney, Australia,
December 5–7 2005.

[Corke and Kirkham, 1993] P. Corke and R. Kirkham.
The ARCL Robot Programming System. In Proc. Int.
Conf. Robots for Competitive Industries, pages 484–
493, 14–16 July 1993.

[Gan et al., 2005] John Q. Gan, Eimei Oyama, Eric M.
Resales, and Huosheng Hu. A complete analytical
solution to the inverse kinematics of the pioneer 2
robotic arm. Robotica, 23(1):123 – 129, 2005.

[KUKA, 2006] KUKA Automatisering + Robots N.V.
http://www.kuka.be/, 2006.

[MobileRobots, 2006] Mobilerobots P3-DX. http:
//www.activrobots.com/ROBOTS/p2dx.html ,
2006.

[Vaughan et al., 2003] R.T. Vaughan, B.P. Gerkey, and
A. Howard. On device abstractions for portable,
reusable robot code. In Intelligent Robots and
Systems, 2003. (IROS 2003). Proceedings. 2003
IEEE/RSJ International Conference on, volume 3,
pages 2421–2427, 2003.


