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Abstract

We present a comparison of three temporal fil-
ters used in the estimation of optical flow for
mobile robot navigation. Previous compar-
isons of optical flow and associated techniques
have compared performance in terms of accu-
racy and/or efficiency, and typically in isola-
tion. These comparisons are inadequate for ad-
dressing applicability to continuous, real-time
operation as part of a robot control loop. We
emphasise the need for comparisons that con-
sider the context of a system, and that are con-
firmed by in-system results. To this end, we
give results for on and off-board trials of two
biologically inspired behaviours: corridor cen-
tring and visual odometry. Our results show
the best performing filter for use in the con-
trol loop is a recursive temporal filter, out per-
forming the traditionally used Gaussian filter.
Results for a large Gaussian filter indicate that
long latencies may significantly impede perfor-
mance for real-time tasks in the control loop.

1 Introduction

For a number of years there has been interest in the
use of optical flow for vision-based mobile robot naviga-
tion, aiming to achieve robust performance for naviga-
tional tasks. There is compelling evidence in biological
vision, of the use of optical flow in perception and navi-
gation in animals. Studies of vision in flying insects have
highlighted visual motion as an important cue for nav-
igational behaviours such as: obstacle avoidance, graze
landings, centred flight in corridors and the estimation of
distance travelled (see [Srinivasan and Zhang, 2000] for

a review). This has inspired new approaches to mobile
robot navigation using optical flow.

Biologically-inspired visual behaviours such as corri-
dor centring [Coombs and Roberts, 1993; Santos-Victor
and Sandini, 1995], obstacle avoidance [Coombs et al.,
1998], and docking [Santos-Victor and Sandini, 1997]

have all been demonstrated using visual motion for
closed loop control of a mobile robot. The use of optical
flow for estimating distance travelled (visual odometry)
has also been implemented [Weber et al., 1996].

While reported results have been encouraging, mobile
robot research has not broadly adopted this paradigm.
This is possibly due to a perceived lack of robustness of
these techniques. The paradigm also lacks a defined sys-
tematic approach to the implementation and integration
of such behaviours into a general navigation framework.
Contributing to these issues is the choice of method for
optical flow estimation. Despite the reliance on optical
flow of such behaviours, the choice of method for estimat-
ing flow remains difficult. The literature gives no clear
indication of any definitive choice when considering mo-
bile robot navigation. There is an abundance of optical
flow techniques available, with varying levels of accu-
racy, robustness and efficiency. The choice of algorithm
for robot navigation or any real-time system operating
in the real world, is an important question as research
further explores this paradigm of robot control.

Methods for estimating optical flow span a number
of categories (see [Beauchemin and Barron, 1995] for a
review of these). Previous comparisons suggest gradient-
based optical flow methods generally perform well when
considering accuracy and efficiency trade-offs, and have
gained the most attention in the literature. Even within
this class of flow methods, accuracy and efficiency levels
vary significantly. Gradient-based methods, defined by
their use of spatio-temporal intensity derivatives, typi-



cally require pre-smoothing to estimate flow accurately.
Image gradient estimates are highly sensitive to noise
and have been shown to perform poorly in high contrast
regions of an image [Kearney and Thompson, 1987] (e.g.
object boundaries in the scene). For this reason, spatio-
temporal filters are used to pre-smooth images before
derivatives are estimated. While increasing accuracy,
temporal filters pose issues for real-time use in control of
a robot. Temporal filters differ in required levels of tem-
poral support (buffered frames) and yield varying levels
of accuracy, latencies and computation times. The per-
formance of gradient-based flow algorithms weighs heav-
ily on the choice of temporal filter. This highlights a
need for the inclusion of temporal filters when compar-
ing optical flow methods for mobile robot navigation.

Comparisons to date have primarily assessed optical
flow techniques and temporal filters on accuracy and/or
efficiency, and only in isolation. Since Barron et al.
[1994] published the first major performance compari-
son, there have been several attempts to reflect more
closely, real-world scenarios and the constraints of real-
time use when evaluating techniques. McCane et al.
[2001] use synthetic image sequences of higher complex-
ity as well as real images with ground truth optical flow
on which to quantitatively compare accuracy under real-
world conditions. Otte and Nagel [1995] present a quan-
titative comparison of accuracy for real images obtained
from a smoothly translating robot arm. Bober and Kit-
tler [1994] give accuracy measures when Gaussian noise
and multiple motions are introduced in synthetic im-
ages. Liu et al. [1996] address the issue of real-time use
through an examination of accuracy/efficiency trade-offs
for optimal performance on synthetic and real image se-
quences. In the case of gradient-based methods, we have
not seen any thorough comparison of temporal filters
when considering the real-time application of gradient-
based optical flow methods. Furthermore, optical flow
is generally not compared with consideration of the task
to be performed, particularly for operation within the
control loop of a mobile robot. We consider in-system
issues important when evaluating optical flow methods
and temporal filters.

Quantitative comparisons of accuracy and efficiency
alone, do not provide sufficient information on which to
base a choice for mobile robot navigation. Real image
sequences obtained under highly controlled conditions
are inadequate for understanding the performance of the
flow technique under real-world conditions, particularly
when operating on-board a mobile robot. Such compar-
isons are useful for benchmarking, but inadequately sup-
port any systematic choice of flow technique or temporal
filter for use in real-time navigational behaviours.

In this paper we present preliminary work in the com-
parison of optical flow for mobile robot navigation. We

compare three temporal filters applied with Lucas and
Kanade’s gradient-based optical flow method [1981] for
mobile robot navigation. Lucas and Kanade was cho-
sen based on its strong performance in previous com-
parisons of accuracy and efficiency [Barron et al., 1994;
Liu et al., 1996]. The temporal filtering techniques for
comparison are: Gaussian filtering with central differ-
encing, Simoncelli’s multi-dimension pre-smoothing and
derivative filters [Simoncelli, 1994], and Fleet and Lan-
gley’s recursive temporal filter [1995]. We focus only
on behaviours involving continuous motion such as cor-
ridor centring and visual odometry. Section 2 presents
an overview and theoretical comparison for each of the
techniques under consideration. Section 3 sets out the
methodology for comparing these techniques for the two
behaviours mentioned above. Section 4 presents re-
sults obtained from off-board trials conducted on a con-
structed sequence of real images with ground truth flow
fields. Section 5 presents on-board results, comparing fil-
ters when embedded in the robot control loop. Section 6
gives our conclusions.

2 Overview and Theoretical

Comparison

In this section we briefly describe the temporal filters
examined in this comparison, and provide an initial the-
oretical comparison of each method for mobile robot
navigation. Traditionally, Gaussian filtering has been
used for pre-processing in gradient-based flow estima-
tion. Typically, kernel sizes are large to achieve high
accuracy, giving rise to concerns about performance in
real-time systems. Of interest are the effects that a large
filter has on real-time performance and whether better
performances can be achieved using alternative tempo-
ral filters of smaller size and delay. We therefore include
two possible alternatives for this comparison, which are
described below. We also include a brief description of
Lucas and Kanade’s gradient-based optical flow method
which has been used in all comparisons conducted for
this paper. The reader is referred to the cited references
for a more thorough description of all these techniques.

2.1 Lucas and Kanade Flow Estimation

Optical flow estimation assumes that intensity across the
image remain constant over time. This is formally rep-
resented by the gradient constraint equation:

Ix(x, t)u + Iy(x, t)v + It(x, t) = 0, (1)

where x=(x, y), u = dx
dt

, v = dy

dt
, and Ix, Iy, and It rep-

resent partial intensity derivatives of the image I(x, t).
Optical flow at each pixel is represented by the compo-
nent of motion in the horizontal and vertical direction:



v=(u, v). The existence of two unknowns and one con-
straint forms an ill-posed problem, and therefore further
constraints are needed to solve for v.

Lucas and Kanade [1981] apply a model of constant
velocity as a second constraint, on small local neighbour-
hoods of the image. The model is applied through a
weighted, least squares fit of local first-order constraints.
This is achieved by minimising:

∑

x∈ω

W (x, t)(∇I(x, t) · v) + It(x, t)))2, (2)

where W (x, t) denotes a window function and ω is the
spatial neighbourhood. Improved accuracy of the flow
field can be achieved by thresholding eigenvalues of the
least-squares matrix associated with (2), however we did
not apply this in any of the comparisons described here.

2.2 Gaussian Filtering

Gaussian image pre-smoothing is applied in convolution
using a finite number of samples of the Gaussian distri-
bution function as the convolution kernel. Derivatives
are then estimated by convolving a differencing kernel
over 1-D neighbourhoods of the smoothed image in the
direction of the gradient being estimated. Typically,
this is done with a size five kernel, allowing two pix-
els on either side of the central pixel to be included in
the differencing. This is known as four point central
differencing(4pcd). Temporal derivatives require convo-
lution over multiple frames and so images are buffered.
The total number of buffered images required is deter-
mined by the size of the derivative kernel and the level of
smoothing, given by the standard deviation of the Gaus-
sian. Barron et al. [1994] showed that gradient-based
methods achieve significantly improved accuracy when a
Gaussian filter of 1.5 standard deviation is applied before
estimating derivatives. For this comparison, we include
two Gaussian filters for use with 4pcd: a large Gaus-
sian with 1.5 standard deviation (Gaussian 1.5), and a
smaller Gaussian 0.5 filter.

2.3 Simoncelli’s Matched-Pair Filters

Simoncelli [1994] proposed a filter design for obtaining
accurate multi-dimensional derivative estimates using a
small linear-phased low-pass filter and derivative filter.
Unlike traditional approaches, the low-pass and deriva-
tive filters are related by their simultaneous design and
applied as a matched pair through convolution with in-
put images. To obtain accurate derivative estimates, an
intermediate interpolation of the noise and discrete in-
put signal is required. Simoncelli’s low-pass filter is ob-
tained by sampling the function performing this interpo-
lation. A derivative filter is then obtained by sampling
the derivative of this function. This yields a matched-
pair of filters sharing a direct relationship through their

design. Reported results [Simoncelli, 1994] show that us-
ing 5-tap low and high pass filters (kernel size five), su-
perior derivative estimation is achieved to that obtained
using a Gaussian 1.5 filter. The implementation used for
this paper employs a pre-smoothing step (size three fil-
ter) before applying the 5-tap matched-pair filters. We
refer to this entire technique as the Simoncelli filter.

2.4 Recursive Temporal Filter

Fleet and Langley [1995] proposed a causal temporal
smoothing and differentiation filter that is applied re-
cursively on each incoming frame. The filter design al-
leviates problems of time delay encountered with stan-
dard temporal filters by implicitly carrying forward past
frames through recursive applications of the filter. This
reduces storage requirements and latency (typically two
or three frames). Images are filtered via a cascaded im-
plementation of an order n filter, where n is the number
of cascades used (and consequently, the temporal de-
lay). A time constant, τ−1, gives the duration of tempo-
ral support. Fleet and Langley [1995] report a minimal
loss in angular accuracy when incorporating an order
three filter (n=3, τ−1=1.25) with Lucas and Kanade.
Over two synthetic image sequences, accuracy was only
slightly worse than results obtained using a Gaussian 1.5
filter. We include this version of the filter in this com-
parison.

2.5 Theoretical Comparisons

Here we compare the above-mentioned temporal filters
for real-time use in mobile robot navigation on the ba-
sis of: accuracy, efficiency, robustness and responsive-
ness. We aim to highlight differences that may lead to
contrasting results when evaluating the in-system per-
formance of each filter.

Accuracy

The accuracy of gradient-based flow methods is sensi-
tive to spatio-temporal derivative estimates. Based on
this, the Simoncelli filter would be expected to yield the
most quantitatively accurate flow. Reported derivative
estimates in [Simoncelli, 1994] show an improvement on
Gaussian 1.5 filtering.

Reported results for the recursive filter [Fleet and Lan-
gley, 1995] indicate that angular error for flow estimates
obtained from synthetic image sequences, are slightly
larger than Gaussian 1.5 filtering for the same sequences.
Qualitative assessment of flow field patterns generated
from real image sequences indicate the recursive filter
produces flow fields resembling those obtained using a
Gaussian 1.5 filter and Lucas and Kanade.

For a Gaussian 0.5 filter, average angular error will
increase due to raised levels of noise. Assessing whether
the reduced accuracy is within an acceptable level is a



Filter time support latency
(ms) (frames) (frames)

Gauss 0.5 116 9 4
Gauss 1.5 170 15 7
Recursive 110 3 3
Simoncelli 106 7 3

Table 1: Efficiency data for temporal filters

system-dependent trade-off, highlighting a need for in-
system evaluation. Based on reported results, all other
filters appear to produce errors within acceptable levels,
giving no clear indication of their relative in-system per-
formances. To further differentiate these filters, other
issues for real-time, in-system use must be considered.

Efficiency

For a 192x144 pixel image sequence, Table 1 shows com-
putation times1, storage requirements and latencies for
all filters. Computation time includes time taken to per-
form filtering and derivative estimation, storage require-
ments represent the number of frames that are required
to be explicitly stored, and latency indicates response
delay in frames for each filter.

A Gaussian 1.5 requires the explicit storage of 15
frames to compute flow. Concerns arise for real-time
use when considering the computational costs and seven
frame delay of the Gaussian 1.5 filter. Temporal de-
lay and storage requirements are improved significantly
for Gaussian 0.5 filters, giving a four frame latency.
With superior accuracy to the Gaussian 1.5 filter, the Si-
moncelli filter requires the explicit storage of just seven
frames, and has a delay of just three frames. The recur-
sive filter also has a latency of three frames (depending
on chosen parameters), and requires the explicit storage
of only three frames.

The Simoncelli and recursive filters both compare well
for latency. The recursive filter however requires less
than half the frame storage of the Simoncelli filter. The
Gaussian 1.5 filter rates poorly in all aspects of efficiency.
Reducing it to a Gaussian 0.5 filter improves efficiency
at the cost of accuracy. As mentioned above, in-system
comparisons will assess the effects of this trade-off.

Robustness

The relatively large temporal support of the Gaussian 1.5
suggests it should be robust to noise in detected visual
motion. This is an important consideration for mobile
robot navigation. Noise induced by the robot’s motion
through small bumps and fluctuations in direction and
velocity have a significant effect on the estimated flow.
Sensitivity to changing conditions is desirable, however,

1
Times taken on an Intel x86 866 MHz machine.

it is also important to filter small fluctuations due to
noise. This avoids the introduction of unnecessary direc-
tional and velocity changes in robot ego-motion, causing
oscillations and control instability.

The Gaussian 1.5 filter should inhibit small fluctua-
tions in apparent motion, thereby providing better tem-
poral cohesion than smaller sized filters, such as the Si-
moncelli filter. The recursive filter, while only requiring
a small explicit temporal support, carries forward past
frames implicitly giving it support from all past frames.
This should provide temporal cohesion in consecutive
flow estimates, providing a comparable (possibly better)
level of robustness to noise to that of the Gaussian 1.5.

Responsiveness

Where significant environmental changes occur, respon-
siveness in the estimated flow is important for a timely
and proportional motor response. This is dependent
upon temporal smoothing, and the extent to which tem-
poral cohesion is enforced.

There is a clear trade-off of robustness to noise and re-
sponsiveness to genuine environmental change perceived
in the flow field. Of concern for the recursive filter is the
extent to which it inhibits change due to the weighting of
influence on past frames only. The recursive filter, unlike
the Gaussian and Simoncelli filters, has no look-ahead,
and relies only upon past frames to perform all temporal
smoothing and derivative estimation. This may inhibit
the filter’s immediate response to image motion changes.
The Gaussian 1.5 filter has a seven frame look-ahead,
and therefore should have reasonable responsiveness to
changes in apparent visual motion for the central frame
under consideration. This look-ahead has little value for
real-time use due to the seven frame delay in motor-
response to the central frame.

Less temporal support should reduce temporal cohe-
sion to a shorter time period, thereby increasing respon-
siveness to change. Temporal delay would also be re-
duced, allowing the control scheme to base motor com-
mands on more current data. This suggests that the
Simoncelli and Gaussian 0.5 filters should be the most
responsive filters. However, this may not be the case
if noise levels become large. Excessive noise may re-
sult in a lack of responsiveness, causing a reduction or
loss of signal due to noise overwhelming the flow field.
Reported accuracy for the Simoncelli filter suggests it
should not suffer from this problem. The Gaussian 0.5
is at greater risk given the expected increase in noise
levels when used.

3 Methodology

The assessment of optical flow performance in a real-time
system requires more than a comparison of accuracy or
efficiency in isolation. While both factors are impor-



tant, an accurate assessment of performance can only be
obtained when considering the context of the tasks be-
ing performed. To this end, we set out a methododolgy
for the comparison of optical flow methods and tempo-
ral filters, for mobile robot navigation where motion is
continuous and predominantly constant. Descriptions
are given for two selected navigational behaviours im-
plemented for this comparison (corridor centring, and
visual odometry). These were chosen because they rep-
resent a contrast of uses for optical flow in robot navi-
gation. We highlight important properties of flow esti-
mation that serve as performance indicators to these be-
haviours. These form the basis of comparisons described
in later sections.

3.1 Corridor Centring

Corridor centring using optical flow draws upon observa-
tions in flying honeybees. The balancing of visual motion
in both eyes, generated by the bees’ ego-motion provides
an emergent centring behaviour in corridors[Srinivasan
and Zhang, 2000]. For robot navigation, this can be
achieved by differencing the average magnitudes of flow
in the left and right thirds of the image from a single,
forward looking camera:

θ = τl − τr, (3)

where τl and τr are the average flow magnitudes in the
left and right peripheral views respectively. θ can be
directly fed into a control scheme for directional control.

Given constant motion and the expected constancy of
a straight corridor, the flow field response should exhibit
consistent average flow magnitude. The robot should be
free of short period directional oscillation resulting from
noise introduced through the robot’s ego-motion. Fre-
quent and current flow updates are needed to maintain
behaviour stability. Long period directional oscillation
through reduced responsiveness is the likely side effect of
such latencies. This can be assessed off-board through
the examination of temporal cohesion in consecutive flow
estimates where ego-motion is approximately constant.
On-board trials can be qualitatively assessed for consis-
tency in robot directional control for a straight corridor
where environmental changes are minimal.

3.2 Visual Odometry

Distance travelled can be quantitatively estimated by ex-
amining accumulated image motion over time, referred
to as visual odometry. This can be used for map build-
ing, navigating with a map or for correcting shaft en-
coder odometry. For a single, forward-looking camera,
distance travelled can be estimated by accumulating av-
erage flow magnitudes in the peripheral regions of the
image over time, where at a given discrete time t, the

visual odometer, dt, is given by [Weber et al., 1996]:

dt =

t∑ 4

[ 1

τl

+ 1

τr
]
, (4)

where corridor width is represented in the denominator,
reducing sensitivity to lateral motion.

Visual odometry is sensitive to environmental change,
and is not expected to reproduce odometry readings in
different environments for the same distance. It should,
however, reproduce the same approximate distance mea-
sure for multiple runs in the same environment. For
comparison of methods, average distances travelled and
variances can be examined for multiple on-board trials,
providing quantitative measures of repeatability. How-
ever, on-board trials are subject to other factors such as
oscillatory directional control, lateral drift, and environ-
mental changes. These are important in-system consid-
erations which can be accounted for by examining the
visual odometer in isolation.

Off-board comparisons over real image sequences allow
quantitative comparison against ground truth. Accuracy
can then be assessed by examining the growth of accu-
mulated visual motion over time. If the distance measure
is accurate and repeatable, we expect it to differ by only
a scale factor, s, from a ground truth visual odometer.
This scale factor should remain approximately constant
over time such that:

s =
gt

dt

=
gt−1

dt−1

= .. =
g1

d1

, (5)

where dt is the current value of the visual odometer and
gt is the corresponding ground truth visual odometer
value.

4 Off-board Comparisons and Results

Off-board experiments were conducted using a real,
heavily textured image sequence cropped to 100x100 pix-
els as shown in Figure 1. The image sequence shows the
motion of a wall moving in a near parallel direction to
the optical axis of the camera. The velocity of the wall’s
motion is approximately 5mm per frame, however the
wall’s apparent visual motion with respect to the camera
is subject to small fluctuations throughout the sequence.

To assist quantitative comparison, ground truth flow
fields were generated for images in the sequence. Ground
truth was obtained by calibrating the camera and em-
ploying a projective warping technique as described in
[McCane et al., 2001]. For increased robustness, the
model fitting technique RANSAC [Fischler and Bolles,
1981] was used to exclude outlying, manually acquired
image feature correlations. We present the experiments
and results below.



Figure 1: Full frame from side wall sequence and ground
truth flow field for the 100x100 pixel (boxed) region used
in off-board comparisons.

4.1 Corridor Centring

Flow magnitude consistency was identified as a signifi-
cant performance indicator for the stability of corridor
centring where robot ego-motion is reasonably constant.
The side wall image sequence described above was used,
allowing the comparison of temporal filters in a well-
formed, but realistic scenario. Fluctuations in the wall’s
apparent image motion allowed for a comparison of con-
sistency under imprecise conditions.

For each frame in the sequence, average flow mag-
nitudes were computed from estimated flow fields us-
ing Lucas and Kanade and each of the temporal filters.
These results are presented in Figure 2, showing the con-
sistency of average flow magnitude for all temporal filters
and ground truth, across the side wall image sequence.
In Figure 2, no latency has been accounted for (i.e. the
graphs plot average flow magnitudes for the frame for
which flow was estimated).

Figure 2 shows all filters producing average flow mag-
nitudes that vary over time. This is consistent with the
estimated ground truth which indicates that apparent vi-
sual motion between frames is not uniform, despite the
approximately constant motion of the wall when the se-
quence was constructed. The Gaussian 0.5 curve exhibits
the worst consistency over the image sequence, showing
relatively sharp fluctuations in response to each frame.
The other three temporal filters exhibit greater temporal
cohesion, showing smoother curves. The Simoncelli fil-
ter performs slightly worse with sharper fluctuations be-
tween some frames. This is most evident between frames
19 and 20, as well a frames 28 to 30.

The recursive and Gaussian 1.5 filters show approxi-
mately equal consistency. The two filters, however, can
be further differentiated when real-time considerations
are introduced.

Figure 3 shows the same data as Figure 2, however,
this time with temporal delay for all of the filters rep-
resented. This graph shows the real-time responses of
each filter across the sequence (i.e. the actual response
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Figure 2: Average flow magnitudes for all temporal fil-
ters without latencies.

that would result at a given frame). The recursive filter
produces an equal level of consistency with a latency of
just three frames, as opposed to the seven frame delay of
the Gaussian 1.5 filter. The Simoncelli filter, despite be-
ing slightly less consistent over the sequence, appears a
more attractive option than the Gaussian 1.5 filter when
temporal delay is considered.

4.2 Visual Odometry

The comparison of visual odometry for each temporal
filter was conducted using the same side wall sequence
as described above. At each frame, the accumulating
visual odometer was updated using (4).

Figure 4 shows accumulated visual motion experienced
over time for each temporal filter. This graph shows
the Gaussian 1.5, recursive and Simoncelli filters all ex-
hibiting growth closely resembling ground truth. The
Gaussian 0.5 filter accumulates less motion over time,
suggesting large flow magnitudes are undetected by the
smaller Gaussian filter.

Table 2 shows average scale factor errors (av(s)) and
standard deviations (σ) of scale factor errors for each
filter when compared with ground truth across the se-
quence. Scale factor errors were calculated using the
value of the ground truth visual odometer at each corre-
sponding odometer update.

According to (5), s should ideally remain constant over
time for the estimate of distance travelled to be accu-
rate. All filters exhibit similar levels of deviation. The
last column in Table 2 shows variances of scale factor er-
ror when calculated from the straight line approximation
to the ground truth visual odometer (sav). The recur-
sive filter shows marginally less variance in s and sav.
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Table 2: Visual odometry error analysis.
Filter av(s) σ(s) σ(sav)
Gauss 1.5 1.06 0.10 0.12
Gauss 0.5 0.87 0.14 0.14
Recursive 1.07 0.09 0.11
Simoncelli 1.03 0.11 0.13

The Gaussian 0.5 exhibits the most deviation over the
sequence on both metrics.

4.3 Discussion

Off-board flow consistency results suggest the recursive
and Simoncelli filters should perform well for corridor
centring. The Gaussian 1.5 filter, despite its relatively
good consistency, is likely to be impeded by temporal
delay. The extent to which this delay effects its perfor-
mance in the control loop will be seen in on-board trials.
The Simoncelli filter, despite exhibiting slightly less con-
sistent flow magnitude over the sequence, appears a more
attractive option when latency is considered. Results for
the Gaussian 0.5 filter suggest it would not perform as
well when used in the control loop for corridor centring.

Visual odometry results suggest no clear distinctions
between filters, however the recursive filter did perform
the best overall. The Gaussian 0.5 filter exhibited the
most variance in scale factor error, suggesting it is the
least accurate of the filters. Given the large implicit
temporal support of the recursive filter, and its reduced
latency, it is expected that this filter would produce the
most accurate and robust distance estimate. This off-
board comparison does not take into account filter la-
tencies, thus not showing the effects of this on distance
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estimation.

5 On-board Comparisons and Results

In this section we present results for comparisons con-
ducted on-board a mobile robot. Implementations of all
temporal filters and Lucas and Kanade’s gradient-based
optical flow method were integrated into the robot con-
trol software, running on an Intel x86 866MHz PC with
radio link to a mobile robot. An on-board camera, fac-
ing in the direction of forward motion was tethered to
the PC. Frames from the camera were sub-sampled to
192x144 pixels, with a frame rate of 12.5 frames/sec.
Robot locations were plotted using a calibrated overhead
camera, and tracking software running on a separate ma-
chine. We present results of both comparisons below.

5.1 Corridor Centring

Trials were conducted for each temporal filter using two
corridor scenarios: a straight corridor approximately 2.5
meters in length and a slightly longer curved corridor.
The width for both corridors was kept approximately
constant at 0.6 meters. Only directional control was
used, with forward velocity kept constant at 0.15m/s
for all trials. This speed was chosen empirically, being
considered slow enough to adequately assess consistency
for all filters and not exceed maximum detectable flow.

A simple proportional control scheme was used for di-
rectional control, where for each filter, the proportional
gain Kp, was empirically chosen from multiple trials
of both the straight and curved corridor. The control
scheme was deliberately made simple to assess flow es-
timations on the basis of control performance. We ac-
knowledge that more sophisticated control schemes can
be employed to improve performance, however, we wish



Figure 5: Sample on-board frame and flowfield.
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to observe the full effects of the filters without damp-
ening from derivative control. Figure 5 shows a sample
frame and estimated flow field from the robot in the
straight corridor. Figure 6 and Figure 7 show the best
performances for each filter in the straight and curved
corridor scenarios respectively.

5.2 Visual Odometry

On-board visual odometry trials were conducted using
the straight corridor and centring behaviour used in the
previous comparison. For each filter, four trials were
conducted. The robot started from the same position
each trial, and moved down the corridor until the ac-
cumulated visual motion exceeded a preset threshold.
Table 3 shows the preset maximum visual distance to
travel, the average distance travelled along the corridor
and standard deviations (in meters) for each filter.

5.3 Discussion

Corridor centring results show that for both corridors,
the strongest performing filter was the recursive filter,
yielding low amplitude oscillation in the straight cor-
ridor, and a near centred path in the curved corridor.
The Gaussian 0.5 filter appears to perform well in the
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Figure 7: Best curved corridor results for all filters.

straight corridor, but its curved corridor performance
showing a lack of responsiveness, suggesting the success
of its straight corridor performance is due to this lack
of responsiveness. Of the four Gaussian 0.5 trials con-
ducted in the curved corridor, it failed three times. In-
creasing Kp did not improve this. The Gaussian 1.5
oscillates significantly in the straight corridor. In other
Gaussian 1.5 trials conducted, the oscillation was typi-
cally much greater than this. In the curved corridor, it
had a relatively high fail rate of three fails from six trials.
Comparing this with the Simoncelli and recursive filters
where no fails were observed, suggests that the larger
delay of the Gaussian 1.5 filter is a likely cause for its
instability.

On-board visual odometry trials exhibited more varia-
tion in results than off-board comparisons showed. From
Table 5.2, the strongest performance was clearly given
by the recursive filter, with a standard deviation of just
3 cm. The next best was the Simoncelli filter with a
recorded 6cm standard deviation. The more stable cen-
tring control, and high update frequency of the recursive
filter is the likely reason for its superior performance. All
filters out performed the Gaussian 1.5, most notably the
Gaussian 0.5. The larger temporal delay of the Gaus-
sian 1.5 appears to have effected its performance, most

Table 3: On-board visual odometry results.
Filter updates avg dist (m) std dev (m)
Gauss 0.5 38 2.17 0.07
Gauss 1.5 35 2.20 0.10
Simoncelli 38 2.12 0.06
Recursive 45 2.31 0.03



likely due to large oscillation in the corridor. perfor-
mance. The strong performance of less accurate filters
indicates a trade-off of computation speed and accuracy
in real-time performance. This highlights the impor-
tance of in-system comparisons for these techniques.

6 Conclusion

In this paper, we have presented results for the compar-
ison of temporal filters for gradient-based optical flow
estimation in mobile robot navigation. We have em-
phasised the need for comparisons of vision techniques
that consider the context of a system. Results were pre-
sented for on and off-board trials of two navigational
behaviours: corridor centring and visual odometry.

Over all comparisons conducted, the strongest perfor-
mances were achieved using the recursive filter. Strong
performances in corridor centring were also achieved us-
ing the Simoncelli filter. Despite the greater temporal
support given to the Gaussian filters, results showed
the recursive and Simoncelli filters consistently out per-
formed both Gaussian filters.

The recursive filter appears to be the strongest per-
forming filter, particularly when integrated into the con-
trol loop. Short latency and large implicit temporal
support appear to be the reasons for this. This is an
encouraging result for the use of gradient-based optical
flow in real-time, real-world conditions, where a rela-
tively fast filter with short delay appears to out perform
the larger Gaussian filter. Off-board results suggested
the Gaussian 1.5 filter could suffer from latency issues,
which appeared to be the case in on-board centring tri-
als. The Gaussian 1.5 oscillated significantly more than
others for the straight corridor case, a likely result of its
large temporal delay. Latencies appeared to also impede
the Gaussian 1.5 filters performance in visual odometry
trials.
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