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Abstract

A platform for intelligent transport systems
and autonomous vehicle research is in devel-
opment at the Australian National Univer-
sity. The vehicle’s first application will be a
test bed for on-road driver and vehicle mon-
itoring as well as computer vision based au-
tonomous steering and velocity control.

1 Introduction

Many Australians spend large amount of time behind
the wheel. Unlike other accident risk factors such as
drink driving and speeding, there is no clear metric
to detect fatigued drivers. The effects of fatigue are
a judgement call on the part of the driver, and ironi-
cally it impairs that judgement. The seriousness of the
problem was highlighted recently in a House of Rep-
resentatives Standing Committee on Communications,
Transport and the Arts inquiry into Managing Fatigue
in Transport. The committee stated that a conserva-
tive estimate is that 20 to 30 percent of all car crashes
can be linked to driver fatigue [HoRSCoCTA, 2000].

With increased computing power, Vision researchers
are getting the courage to move outside of highly con-
trolled laboratory and factory environments. The road
environment offers an excellent compromise between
the rigid constraints available in the laboratory and
the complexity of the outside world. Roads are de-
signed by humans to be: high contrast, predictable in
layout and predominately free of out of context ob-
jects (any object unexpected can savely regarded as
something to be avoided). Road vehicle control also
has some significant niceties. Unlike many other real
world robot deployments, there is a finite amount of a
priori knowledge required by the robot, a lot of which
has been explored and documented to educate human
drivers. Also there is a significant body of literature
avaliable regarding the dynamics of road vehicles.

Automation in road vehicles is being looked to as
a possible tool to combat fatigue. Analogous to the

Figure 1: The Autonomous Vehicle.

deployment of industrial robots, automation offers the
possibilities of continous attentiveness and exceptional
endurance. The point has not been lost on vehicle man-
ufacturers, most of which are now incorporating sys-
tems into their prototype cars and actively researching
move advanced driver aids [Kato and Ninomiya, 2000]
[Maurer, 2000].

At the ANU’s Autonomous Vehicle Project (AVP)
preliminary research into autonomous systems for cars
has begun. Previously in Australia the Safe-T-Cam
project has been very successful at using computer vi-
sion to monitor the speed and trip times of trucks.
And [Jarvis, 2000] are developing a sensor equipped
vehicle for driver assistance. Internationally a large
number of research groups are investigating a vari-
ety of topics. Arguably the most successful group
has been the Universität der Bundeswehr München
(UBM) where vehicles have been developed that can
drive autonomously down freeways at speeds of over
140kph. The vehicles, predominately using computer
vision, can complete complex tasks such as overtak-
ing other vehicles[Dickmanns, 1999]. Carnegie Mel-
lon University’s Navlab project and its successors have
also made significant contributions with the RALPH
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lane tracking system and trinocular obstacle detection
[Batavia et al., 1998][Williamson and Thorpe, 1999].

Initially the focus of the AVP is to explore computer
vision as a means of identifying the state of the vehicle
under the control of a human driver. Future experi-
ments will introduce computer control of the vehicle.
The research has two fronts: to explore the use of a
computer vision (and other sensors) to control a vehi-
cle and to explore how a human driver goes about con-
trolling a vehicle. Vehicle monitoring can be thought
of as the study of how people actually perceive the
road environment while driving. Likewise vehicle con-
trol can be thought of as the study of how people act
while behind the wheel. Although there are numerous
differences between any possible computer based sys-
tem and a human driving system, the project attempts
to structure the road scene perception task in a way
that can mimic the human system.

In the next section we give a hardware overview of
the vehicle. Then we discuss the issues involved in
computer vision for lane following. Finally we demon-
strate an approach to moving obstacle detection.

2 Hardware Overview

The test-bed vehicle in our project is a 1999 Toyota
Landcruier 4WD (Fig. 1). A 4WD vehicle was cho-
sen for a number of reasons: it provides a strong and
robust platform capable of surviving the rigors of ex-
perimentation; it has a large amount of interior space
for installing sensors/computers; and it allows the op-
tion of performing research into off-road autonomous
driving. As already stated, the project is ongoing, and
so installation of hardware into the vehicle is not yet
fully complete. In the following paragraphs we present
a review of the hardware we have already installed and
which we plan to install into the vehicle. For the pur-
pose of this discussion, we note that hardware can be
divided into three types: sensing, actuation, and com-
munication/processing.

The main mode of sensing used in the vehicle will
be vision. Two separate vision systems are planned.
First, an active vision head (called CeDAR developed
previously at the ANU - see [Truong et al., 2000]) will
be mounted with two stereo camera pairs. One pair
will have a short focal length, and concentrate on the
near field of view, while the other pair will have a
longer focal length, and concentrate on looking further
along the road. The second vision system involves us-
ing a stereo pair looking from the dash back toward the
driver’s face. By monitoring the driver useful informa-
tion as to their intention can be gathered as well as
verification that they have seen a detected dangerous
situation. This system is based on the faceLAB sys-
tem from [Seeing Machines, 2001]. Apart from vision
sensing, a Global Positioning System (GPS), Inertial
Navigation Sensor (INS), and laser range finder have
been installed into the vehicle. The 6 DOF INS is

Figure 2: Steering mechanism of vehicle including drive
motor/clutch unit (left), idler gear (centre) and gear on
steering shaft (right).

mounted close to the vehicle’s centre of gravity at a
point between the two rear-seat foot-wells. It provides
a continuous stream of linear and angular acceleration
data that can be used to keep track of vehicle dynam-
ics. The GPS provides data that can be used for high-
level, navigation problems, but is also very useful for
correcting drift in the INS output. The laser range
finder has been mounted looking forward on the vehi-
cle’s bull-bar. Its purpose will be to identify obstacles,
both stationary (eg. guard-rails, parked cars, etc.) and
moving (eg. other vehicles), and will provide an addi-
tional source of information for our obstacle avoidance
algorithms.

Three actuation sub-systems are required in the
vehicle: steering, braking, and throttle. We achieve
throttle control by interfacing with the vehicle’s cruise
control module. The steering sub-system is based
around a Raytheon rotary drive motor/clutch unit,
which was designed for use in yacht auto-pilot applica-
tions. It was installed in the engine bay alongside the
steering shaft of the vehicle. Power from an electric
motor is transferred to the steering shaft using three
spur gears: the first is attached to the steering shaft,
the second to the motor shaft, and the third, being an
idler gear, sits between the first two. A key feature in
the design is that the idler gear can be engaged and
disengaged from the drive-train using a lever protrud-
ing from the assembly. Then for “manual” driving of
the vehicle, the idler gear can be disengaged, providing
the safeguard that the autonomous steering assembly
cannot impede normal steering in any way. A photo
of the steering sub-system is shown in Figure 2. Note
the lever used to engage and disengage the idler gear.
Also note the rotary drive motor/clutch unit, and the
vehicle’s steering shaft.
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Figure 3: Braking device showing linear actuator &
cable mechanism.

The braking sub-system is based around a linear
drive unit (produced by Animatics), and an electro-
magnet. The linear drive is connected to one end of
a braided steel cable via the electromagnet. The ca-
ble passes through a guiding sheath to reach, at its
other end, the brake pedal. Braking is then achieved
by having the linear drive unit pull on the cable. The
electromagnet must be powered in order for braking
to occur (ie. if it is unpowered, then the linear drive
cannot pull on the cable to activate the brake). In
an emergency, power can be cut to the electromag-
net so that all braking control is returned back to the
driver. In our implementation, an emergency scenario
is communicated to the autonomous driving system by
having the human activate an emergency stop button.
The braking subsystem is shown in Figure 3. In the
foreground the figure shows the linear drive and elec-
tromagnet, while in the background the brake pedal
and its connection with the cable is shown.

Processing and communication hardware is re-
quired to fuse together the various sensing and actua-
tion subsystems into a cohesive, single unit. Our ap-
proach in this area has been to favor the use of stan-
dard PC and networking hardware. Such hardware is
readily available, easily upgradable, and cheap. Cur-
rently we have two PCs installed. One is a 1.4GHz Pen-
tium IV, and is used for processing the video streams
from the stereo pairs on the active head. The other is
a dual 750MHz pentium III, and will be used for pro-
cessing the video streams from the cameras focussed
on the driver’s face. An additional PC will be installed
to process non-vision sensing data, and to control the

throttle, steering, and braking subsystems. Commu-
nication is achieved between PCs via ethernet, with
a connection from the vehicle back to a base station
possible via a radio ethernet link. Due to the large
number of sensing and actuation devices that commu-
nicate over serial lines, a serial port server has been
installed. This device allows communication between
a PC and serial devices as though these devices were
connected directly to local serial ports on a PC. Fi-
nally, a SNAP I/O module (made by opto22 ) has been
installed to provide a low level communication inter-
face between PCs and various other devices (eg. cruise
control system, steering motor control, steering angle
potentiometer). This module connects into the ether-
net, and provides a number of functionalities, including
A/D and D/A conversion, PID control, timers, etc.

3 Vision Based Lane Tracking

Two main areas of thought exist on the construction
of Intelligent Transport Systems (ITS): a new road in-
frastructure can be created to be an integral part of the
ITS (i.e. through the use of lane marker beacons) or
intelligent vehicles can be designed to work with the
existing road infrastructure. This project focuses on
making autonomous vehicles that can deal with exist-
ing road infrastructures. Two main issues support this
decision: the obvious financial restrictions associated
with the modification of existing road infrastructures;
and the additional flexibility of designing a vehicle that
can deal with a real world environment.

The task of Lane Tracking is to detect and track
the boundaries and lane markings of a road, and is
fundamental for autonomous vehicles. It is also useful
for driver monitoring and assistance systems, such as
Lane Departure Warning (LDW) and Adaptive Cruise
Control (ACC) systems. The majority of lane track-
ing projects have focused on using one or at most two
visual cues for the detection of lane boundaries. These
systems often fall prey to robustness issues due to the
inadequacies of the cues chosen. However, by combin-
ing a number of cues it is feasible to increase the ro-
bustness of the solution. We hope to exploit this idea
in the lane tracking research outlined in this paper.

Preliminary results at the ANU using a simple fea-
ture extraction algorithm [Dickmanns and Zapp, 1987]
have reinforced this idea. An overview of the algorithm
is shown in Fig. 4. This algorithm is used to extract
edges at specific angles, θ, to detect road boundaries
and lane markings from an image.

A low-pass filtering of the search region is performed
by condensing a pixel field oriented at the angle θ
shown, into a single vector. This condensed vector
is then searched for edge pixels via a ternary correla-
tion. The algorithm is particularly useful for searching
for edges at predicted angles, but can also be used for
initialisation of lane tracking algorithms by searching
over several angles. Sensitivity of the edge detector to
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Figure 4: Edge detection algorithm by Dickmanns

curved edges and varying edge widths is controlled by
the parameters of the ternary mask, and the number
of rows chosen to be condensed together.

Figure 5 shows the edges found using this algorithm
on a road image containing various factors that make
road detection difficult (reflections in the windscreen,
structures that run parallel to the road and shadows
across the road). The black lines show the road and
lane boundary edges that were detected. The white
lines indicate invalid edges that can be easily removed
via simple continuity constraints and road model fit-
ting, while the dashed lines indicate edges that could
be incorrectly detected as road or lane boundary edges.

This presents the question, “how does one decide
which edges are part of the road boundary and which
ones are not?”. Further information or a priori knowl-
edge must be used to filter out invalid information. For
example, the system presented in [Suzuki et al., 1992]
utilises a global constraint on the scene (that the pro-
jective transformation induced by the camera, projects
the parallel lines of the road so that they meet at the
vanishing point). This does not help with any edges
that are found to be parallel with the road (cracks, oil
stains, fences etc.). Additionally, many systems rely on
the use of lane markings to search for dark–light–dark
regions within the image. However, it is undesirable to
rely solely on this information considering the lack of
detectable lane markings on Australian roads. There-
fore it is beneficial to use a set of substantially different
cues for the detection of road regions that do not have
the same inadequacies as each other. If enough redun-
dant cues are used so that the inadequacies of each can
be factored out, then a robust lane detection algorithm
can be constructed.

Some possible cues that will be investigated in this
project include:

• Feature edge detection.

• Colour segmentation.

• 3D stereopsis with the assumption of relatively
constant road width.

• The 4D approach [Dickmanns and Zapp, 1987].

• The assumption of the road as a plane.

The architecture of the system uses a probabilistic
approach to combine data from the different cues and
a condensation algorithm [Blake and Isard, 1998] to
control hypothesis generation. Additionally, it is de-
sirable to perform such computations in an efficient

Figure 5: Lane edge feature detection using a single
edge based cue

manner by limiting the use of extra cues to periods
of high uncertainty. This is particularly useful con-
sidering that initialisation is the most difficult task of
the lane tracking process. Once the road position is
known, robust prediction of future road positions can
be made using the continuity of the vehicles motion.
This allows higher probabilistic outcomes of the cues
and a resulting reduction in computational complexity.

Initial results using only one edge based cue show
that the condensation algorithm has a positive effect
on the detection and tracking performance of the sys-
tem. Due to the “reverse” nature of the condensation
algorithm where hypothesized road models are verified
instead of searched for, many of the a priori constraints
mentioned above are imposed indirectly on the system,
increasing the robustness of the system.

4 Vision Based Obstacle Detection &
Tracking

Obstacle detection faces many of the same issues as
lane tracking and similarly we believe robust fusion of
visual cues and expectation based image processing is
the way to maximise the information gleaned from the
cameras. In related research an condensation based
architecture for face tracking has been developed. The
result of multiple visual cues are integrated with vary-
ing update frequencies to maximise the tracking perfor-
mance under a finite computational resource constraint
[Loy et al., 2002]. An extension of this architecture will
be used for vehicle obstacle tracking. Different meth-
ods of image processing will be used depending on the
certainty that objects in the visual field are success-
fully described by a list of current known objects. If
tracked objects don’t behave as their motion model
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predicts or if the system is just starting, bootstrapping
algorithms are used which perform computationally in-
tensive “bottom up” image processing.

The primary bootstrapping technique we are inves-
tigating is realtime 3D depth flow.

Realtime 3D depth flow fuses a stream of stereo
depth map information with conventional 2D optical
flow to derive an estimate of the 3D position and rel-
ative velocity of in the direction of each pixel in the
stereo image [Kagami et al., 1999]. The method relies
on area based correlation between the images. On the
active camera platform the camera pair share the same
tilt axis. When the cameras are parallel the lines of dis-
parity due to depth (that is the epipolar lines) are also
parallel. When the cameras are verged or diverged a
homographic transformation to each image is required
can restore the parallel imaging geometry. With paral-
lel images the depth of a point in 3D space corresponds
to a horizontal disparity between the matched points in
the images. 2D optical flow is calculated using matched
regions in consecutive frames from one camera, in this
case there can be a vertical and horizontal component
to the disparity.

In both the disparity map and the optical flow field
consistency checking is used to cull noisy results. Con-
sistency checking is a particularly convenient valida-
tion process as most of the computations required are
done as a product of the original disparity map and
optical flow calculation. Sub pixel interpolation is also
done using a quadratic approximation.

The 3D depth flow is produced by combining the
depth map and the 2D optical flow. The 2D optical
flow can be computed on either the left or the right
image sequence. The choice is abitrary as it will only
change the orientation of the 3D depth flow coordinate
frame relative to the vehicle. We use the left image
sequence.

The 2D optical flow gives the X and Y velocity of
objects projected into the image plane, the Z velocity
is determined by finding the change in depth of the
object from time tk to tk+1.
That is the change in depth ∆Z at time k is given by:

∆Zk+1 = Depthk+1(Xk+1, Yk+1)−Depthk(Xk, Yk)
(1)

where Xk & Yk represent the projection of the 3D point
in the image plane at time k. Depthk(X,Y ) represents
the projected depth in the direction (X,Y ) at time k.

Figure 6 shows: (a) the left image from the stereo
camera pair, (b) a surface generated from the disparity
map and (c) a section of the 3D depth flow around the
overtaking car. The overtaking car shows up as a lump
on the right hand side of the surface (Fig. 6b), the tree
line can be seen in the top right corner. The road is
visible across the bottom and to the left. Spikes such
as the one in the top left of the surface are noise caused
by aliasing. In the 3D depth flow (Fig. 6c) instanta-
neous velocity vectors of points on the overtaking car

Figure 6: A.(top): left image from stereo pair,
B.(middle): 3D surface from stereo disparity (rectan-
gle indicates region of 3D depth flow), C.(bottom): 3D
depth flow.

are shown, like 2D optical flow, the measurements are
noisy but can be combined to get a better result.

Our disparity map implementation uses a Laplace of
Guassian (LoG) filter followed by sum of absolute dif-
ference (SAD) template correlation. Normalised cross
correlation (NCC) has also be implemented, however
our of LoG & SAD correlation is currently faster than
the NCC algorithm and as [Banks et al., 1997] has
shown the results are similar. To acheive real time
performance, both the depth map and the optical flow
are computed recursively (which reduces redundancy
in the calculations), use the cache efficiently by group-
ing operations operating on the same image region and
use Single Instruction, Multiple Dataset (SIMD) in-
structions (MMX & SSE) [Kagami et al., 1999][Kagami
et al., 2000].
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Although the 3D depth flow is optimised it runs is
still too slow to be used at full resolution at frame rate
(currently around 5Hz at 640x480 & 10Hz at 320x240).
Instead the 3D depth flow will run as a background
processing task performing a “catch all” function for
detecting new obstacles. Obstacles are segmented from
the 3D depth flow by looking for regions bounded by
discontinuities of depth and relative velocity. Detected
Obstacles will be tagged as known objects and tracked
using consistent colour, template tracking and a simple
motion model.

Conclusion

An introduction to the Autonomous Vehicle Project
(AVP) at the ANU has been given with a hardware
overview of the vehicle. The AVP will concentrate on
computer vision for lane tracking and obstacle detec-
tion. A preliminary investigation into lane tracking
reinforces the need for the fusion of multiple image pri-
matives for reliable results. An approach to obstacle
detection & tracking is outlined including the intended
bootstrapping mechanism.
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